List of Topics for Final

Chapter 7: Integrals

- (7.1) Evaluate integrals using integration by parts.
- (7.1) Evaluate integrals using a combination of substitution and integration by parts.
- (7.2) Evaluate integrals of the form $\int \sin ^{m}(x) \cos ^{n}(x)$.
- (7.2) Evaluate integrals of the form $\int \tan ^{m}(x) \sec ^{n}(x)$.
- (7.2) Evaluate integrals of the form $\int \sin (A x) \cos (B x)$.
- (7.3) Evaluate integrals using substitutions of the form $x=\sin \theta, x=\tan \theta$, and $x=\sec \theta$.
- (7.4) Carry out long division between two polynomials $P(x)$ and $Q(x)$.
- (7.4) Decompose a function of the form $P(x) / Q(x)$ into partial fractions.
- (7.4) Integrate functions of the form $(a x+b)\left(c x^{2}+d x+e\right)$ where the denominator is irreducible.
- (7.3-7.4) Re-write a function of the form $a x^{2}+b x+c$ in the form $a(x+h)^{2}+k$.
- (7.7) Estimate definite integrals using the Midpoint Rule, Trapezoidal Rule, and Simpson's Rule.
- (7.7) Put upper bounds on the errors of any of the above estimates.
- (7.8) Use L'Hospital's Rule to find the limit of a function.
- (7.8) Evaluate improper integrals using the limit definition.
- (7.8) Demonstrate whether a given improper integral converges by using the p-test, comparison test, or limit comparison test.

Chapter 11: Sequences and Series

- (11.1) State the Monotone Convergence Theorem. Find a function where the MTC applies and one where it doesn't.
- (11.1) Decide whether a given sequence converges or diverges. If it converges, find its limit.
- (11.2) Find the sum of a given geometric series.
- (11.2) Use the Test for Divergence to show that a given series diverges.
- (11.3) Use the Integral Test to show whether a series converges or diverges.
- (11.3) Given a partial sum s_{n} of a series s, use the Integral test to estimate the remainder $R=s-s_{n}$.
- (11.4) Use the Comparison Test and Limit Comparison Test to show whether a given series converges or diverges.
- (11.5) Use the Alternating Series Test to show that a given series converges.
- (11.5) Find divergent series that satisfy two of the three conditions for the AST.
- (11.6) Use the Ratio and Root Tests to decide whether a given series is absolutely convergent.
- (11.6) Find examples of series that are convergent but not absolutely convergent.
- (11.8) Find the interval of convergence for a given power series.
- (11.10) Find the Taylor series of a given function by computing its derivatives at a specified point.
- (11.10) Find the Taylor series of a given function by building it up from simpler Taylor series.
- (11.10) Given two Taylor series, find their sum, product, and quotient up to a specified order.
- (11.10) Use Taylor series to evaluate the limit of a given function.

Chapters 9/17: Differential Equations

- (9.1) Given a function f, check that it verifies a given differential equation.
- (9.2) Given a list of differential equations and pictures of direction fields, match each equation with the appropriate picture.
- (9.2) Make a rough sketch of the direction field for a given differential equation, including the curves where $y^{\prime}=0$.
- (9.2) Given a differential equation, initial value y_{0}, and step size h, approximate values for the solution using Euler's method.
- (9.3) Given a differential equation that can be expressed in the form $y^{\prime}=f(y) g(x)$, find the general solution for y.
- (9.5) Find the general solution to differential equations of the form $y^{\prime}+P(x) y=Q(x)$.
- (17.1) Find the general solution to differential equations of the form $a y^{\prime \prime}+b y^{\prime}+c y=0$.
- (17.2) Find the general solution to differential equations of the form $a y^{\prime \prime}+b y^{\prime}+c y=G(x)(1)$ by using the method of undetermined coefficients and (2) by using variation of parameters.
- (General) Given any general solution to a first-order differential equation, find the specific solution when given an initial value (e.g. $y(0)$).
- (General) Given any general solution to a second-order differential equation, find the specific solution when given initial values (e.g. $\left.y(0), y^{\prime}(0)\right)$ or boundary values (e.g. $y(0), y(2)$).

