11.6: Convergence Tests
 Friday, March 6

Speed Round

1. $\cos (\pi n)=(-1)^{n}$
2. $\frac{2^{n+1}}{2^{n}}=2$
3. $\frac{(n+1)!}{n!}=n+1$
4. $\frac{(2 n+2)!}{2 n!}=(2 n+1)(2 n+2)$
5. $\frac{2^{n+1}}{n!} \frac{(n+1)!}{2^{n}}=2(n+1)$
6. $\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{n^{2}}=1$
7. $\lim _{n \rightarrow \infty} n^{1 / n}=1$
8. $\lim _{n \rightarrow \infty} e^{1 / n}=1$
9. $\lim _{n \rightarrow \infty} e^{-1 / n}=1$

Convergent or divergent?

1. $\sum_{n=1}^{\infty} \frac{1}{n+\ln n}$ divergent
2. $\sum_{n=1}^{\infty} \frac{n^{2}+3 n}{n^{3}}$ divergent
3. $\sum_{n=1}^{\infty} \frac{n+\sqrt{n^{3}+3}}{n^{3}}$ convergent
4. $\sum_{n=1}^{\infty} \frac{n^{2} 2^{n}}{n!}$ convergent
5. $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$ convergent
6. $\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}$ convergent
7. $\sum_{\substack{n=1 \\ \text { gent }}}^{\infty} \frac{n^{3}+\pi^{n}+\sin n}{3^{n}}$ diver-
8. $\sum_{n=1}^{\infty} \frac{1}{n}-\frac{1}{n+\sqrt{2}}$ convergent
9. $\sum_{n=1}^{\infty} \frac{e^{1 / n}}{n}$ divergent

The Convergence Tests

1. Alternating Series: If
(a) $b_{n}>0$ for all n
(b) b_{n} is a monotonically decreasing sequence $\left(b_{n}>b_{n+1}\right)$
(c) $\lim _{n \rightarrow \infty} b_{n}=0$,
then $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ converges.
2. Ratio Test: If $L=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}<1$, then $\sum_{n=1}^{\infty} a_{n}$ converges. If $L>1$, the series diverges, and if $L=1$ the test is inconclusive.
3. Root test: If $L=\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}<1$ then $\sum_{n=1}^{\infty} a_{n}$ converges. If $L>1$, the series diverges, and if $L=1$ the test is inconclusive.

The Ratio Test and Root Test Do Not Care For Polynomials

Let $a_{n}=n^{K}$, for any number K. Show that the ratio and root tests are both inconclusive.

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{K}}{n^{K}}=\lim _{n \rightarrow \infty}(1+1 / n)^{K}=1 \\
\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=\lim _{n \rightarrow \infty} n^{K / n}=\lim _{n \rightarrow \infty} e^{K \ln n / n}=e^{K \lim _{n \rightarrow \infty} \ln n / n}=e^{0}=1
\end{gathered}
$$

Exercises

Decide whether the following series are absolutely convergent, conditionally convergent, or divergent.

1. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \mathrm{CC}$
2. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \mathrm{ABS}$
3. $\sum_{n=1}^{\infty} \frac{\cos n}{n^{2}} \mathrm{ABS}$
4. $\sum_{n=1}^{\infty} \frac{n^{2} 2^{n}}{3^{n}}$ ABS
5. $\sum_{n=1}^{\infty} \frac{n^{10} 5^{n}}{n!} \mathrm{ABS}$
6. $\sum_{n=1}^{\infty} \frac{n^{3}+(-5)^{n}}{4^{n}}$ DIV
7. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n-\ln n} \mathrm{CC}$
8. $\sum_{n=1}^{\infty} \frac{n+(-3)^{n}}{3^{n}}$ DIV
9. $\sum_{n=1}^{\infty}\left(\frac{n^{3}+4 \sqrt{n}}{2 n^{3}+1}\right)^{n} \mathrm{ABS}$
10. $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!} \mathrm{ABS}$
11. $\sum_{n=1}^{\infty} \frac{(-1)^{n}\left(n+2^{n}\right)}{n 2^{n}} \mathrm{CC}$
12. $\sum_{n=1}^{\infty} \frac{n!}{n^{n}} \mathrm{ABS}$

Our Favorite Power Series

For each of the following power series, find the values of x for which the series is divergent, the values for which it is absolutely convergent, and the values (if any) for which it is conditionally convergent.

1. $e^{x}=1+x+x^{2} / 2+x^{3} / 3!+\ldots=\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$

Absolutely convergent for all x (use the Ratio Test).
2. $\sin (x)=x-x^{3} / 3!+x^{5} / 5!-\ldots=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{2 n-1}}{(2 n-1)!}$

Absolutely convergent for all x (use the Ratio Test).
3. $\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots=\sum_{n=0}^{\infty} x^{n}$

Absolutely convergent for $|x|<1$, divergent for $|x| \geq 1$ (Ratio Test).
4. $\ln (1+x)=x-x^{2} / 2+x^{3} / 3-x^{4} / 4+\ldots=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}$

Absolutely convergent for $|x|<1$, conditionally convergent for $x=1$, divergent otherwise.
5. $\arctan (x)=x-x^{3} / 3+x^{5} / 5-\ldots=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{2 n-1}}{2 n-1}$

Absolutely convergent for $|x|<1$, conditionally convergent for $x= \pm 1$, divergent otherwise.

