Review: Chapter 11 Friday, May 1

11.1: Sequences

True or False! As always, give a counterexample to the false statements.

- 1. If $\{a_n\}$ and $\{b_n\}$ are convergent then $\{a_n + b_n\}$ is convergent.
- 2. If $\{a_n\}$ and $\{b_n\}$ are convergent then $\{a_nb_n\}$ is convergent.
- 3. If $\{a_n\}$ and $\{b_n\}$ are divergent then $\{a_n + b_n\}$ is divergent.
- 4. If $\{a_n\}$ and $\{b_n\}$ are divergent then $\{a_nb_n\}$ is divergent.
- 5. If f is continuous and $\{a_n\}$ converges then $\lim_{n\to\infty} f(a_n)$ exists.
- 6. If f is continuous and $\{a_n\}$ diverges then $\lim_{n\to\infty} f(a_n)$ does not exist.

Not True or False!

- 1. Define what it means for a sequence to be bounded.
- 2. What are the conditions for the Monotone Convergence Theorem?
- 3. Give an example of a monotonic sequence that does not converge.
- 4. Give an example of a bounded sequence that does not converge.

11.2: Series

- 1. What is the harmonic series? Does it converge or diverge?
- 2. Decide whether $\sum_{n=1}^{\infty} 3 \cdot 2^n$ and $\sum_{n=1}^{\infty} 3/2^n$ converge or diverge. Find the limits if they converge.

11.3-11.7: Lots of Convergence Tests

Converge or diverge?

1.
$$\sum_{n=1}^{\infty} \frac{3^n}{n!}$$
2.
$$\sum_{n=1}^{\infty} \frac{n^2}{n^3 + 1}$$
3.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^3 + 1}}{n^2}$$
5.
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^{1.1}}$$
6.
$$\sum_{n=1}^{\infty} \frac{n^{30}}{1.01^n}$$

For each of the following tests, do the following:

- 1. State what the test is.
- 2. Give an example of a series where the test proves convergence, if applicable.
- 3. Give an example of a series where the test proves divergence, if applicable.
- 4. Give an example of a series where the test is inconclusive or does not apply.
- Test For Divergence

- P-series Test
- Comparison Test
- Limit Comparison Test
- Alternating Series Test
- Ratio Test
- Root Test

True/False!

- 1. If $\sum_{n=1}^{\infty} a_n$ is convergent then it is absolutely convergent.
- 2. If $\sum_{n=1}^{\infty} a_n$ is absolutely convergent then it is convergent.
- 3. If the Ratio Test says that $\sum_{n=1}^{\infty} a_n$ converges then it converges absolutely.
- 4. If $\sum_{n=1}^{\infty} a_n$ converges but the Ratio Test is inconclusive then $\sum_{n=1}^{\infty} a_n$ converges conditionally.
- 5. If $\sum_{n=1}^{\infty} a_n$ is an alternating series then it converges.

11.8-10: Taylor Series

Find the Taylor series for the following functions up to the x^5 term:

 1. $\sin x$ 3. e^x 5. $e^x \cos x$

 2. $\cos x$ 4. $\frac{1}{1-x}$ 6. $\frac{x^2}{1+2x}$

Find power series that have the following radii of convergence:

1. $[-1, 1]$	3. $[2,3)$	5. $(-\infty,\infty)$
2. $(3,5)$	4. $(0,7]$	6. $\{4\}$