Review: Chapter 11
 Friday, May 1

11.1: Sequences

True or False! As always, give a counterexample to the false statements.

1. If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent then $\left\{a_{n}+b_{n}\right\}$ is convergent.
2. If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent then $\left\{a_{n} b_{n}\right\}$ is convergent.
3. If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are divergent then $\left\{a_{n}+b_{n}\right\}$ is divergent.
4. If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are divergent then $\left\{a_{n} b_{n}\right\}$ is divergent.
5. If f is continuous and $\left\{a_{n}\right\}$ converges then $\lim _{n \rightarrow \infty} f\left(a_{n}\right)$ exists.
6. If f is continuous and $\left\{a_{n}\right\}$ diverges then $\lim _{n \rightarrow \infty} f\left(a_{n}\right)$ does not exist.

Not True or False!

1. Define what it means for a sequence to be bounded.
2. What are the conditions for the Monotone Convergence Theorem?
3. Give an example of a monotonic sequence that does not converge.
4. Give an example of a bounded sequence that does not converge.

11.2: Series

1. What is the harmonic series? Does it converge or diverge?
2. Decide whether $\sum_{n=1}^{\infty} 3 \cdot 2^{n}$ and $\sum_{n=1}^{\infty} 3 / 2^{n}$ converge or diverge. Find the limits if they converge.

11.3-11.7: Lots of Convergence Tests

Converge or diverge?

1. $\sum_{n=1}^{\infty} \frac{3^{n}}{n!}$
2. $\sum_{n=1}^{\infty} \frac{n^{2}}{n^{3}+1}$
3. $\sum_{n=1}^{\infty} \frac{\sqrt{n^{3}+1}}{n^{2}}$
4. $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$
5. $\sum_{n=1}^{\infty} \frac{\ln n}{n^{1.1}}$
6. $\sum_{n=1}^{\infty} \frac{n^{30}}{1.01^{n}}$

For each of the following tests, do the following:

1. State what the test is.
2. Give an example of a series where the test proves convergence, if applicable.
3. Give an example of a series where the test proves divergence, if applicable.
4. Give an example of a series where the test is inconclusive or does not apply.

- Test For Divergence
- P-series Test
- Comparison Test
- Limit Comparison Test
- Alternating Series Test
- Ratio Test
- Root Test

True/False!

1. If $\sum_{n=1}^{\infty} a_{n}$ is convergent then it is absolutely convergent.
2. If $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent then it is convergent.
3. If the Ratio Test says that $\sum_{n=1}^{\infty} a_{n}$ converges then it converges absolutely.
4. If $\sum_{n=1}^{\infty} a_{n}$ converges but the Ratio Test is inconclusive then $\sum_{n=1}^{\infty} a_{n}$ converges conditionally.
5. If $\sum_{n=1}^{\infty} a_{n}$ is an alternating series then it converges.

11.8-10: Taylor Series

Find the Taylor series for the following functions up to the x^{5} term:

1. $\sin x$
2. $\cos x$
3. e^{x}
4. $\frac{1}{1-x}$
5. $e^{x} \cos x$
6. $\frac{x^{2}}{1+2 x}$

Find power series that have the following radii of convergence:

1. $[-1,1]$
2. $(3,5)$
3. $[2,3)$
4. $(0,7]$
5. $(-\infty, \infty)$
6. $\{4\}$
