Review: Chapter 11 Friday, May 1

11.1: Sequences

True or False! As always, give a counterexample to the false statements.

- 1. If $\{a_n\}$ and $\{b_n\}$ are convergent then $\{a_n + b_n\}$ is convergent. True.
- 2. If $\{a_n\}$ and $\{b_n\}$ are convergent then $\{a_nb_n\}$ is convergent. True.
- If {a_n} and {b_n} are divergent then {a_n + b_n} is divergent.
 False: a_n = n, b_n = -n, a_n + b_n = 0.
- 4. If $\{a_n\}$ and $\{b_n\}$ are divergent then $\{a_nb_n\}$ is divergent. False: $a_n = b_n = (-1)^n, a_nb_n = 1.$
- 5. If f is continuous and $\{a_n\}$ converges then $\lim_{n\to\infty} f(a_n)$ exists. True, and furthermore $\lim_{n\to\infty} f(a_n) = f(\lim_{n\to\infty} a_n)$.
- 6. If f is continuous and $\{a_n\}$ diverges then $\lim_{n\to\infty} f(a_n)$ does not exist. False: If f(x) = 0 for all x then $\lim_{n\to\infty} f(a_n) = \lim_{n\to\infty} 0 = 0$ regardless of the sequence $\{a_n\}$.

Not True or False!

- 1. Define what it means for a sequence to be bounded. There exists M such that $|a_n| \leq M$ for all n.
- 2. What are the conditions for the Monotone Convergence Theorem? MTC: if a_n is monotonic (either increasing or decreasing) and bounded then {a_n} converges. The rationale is that a sequence converges either if it is increasing and bounded above or if it is decreasing and bounded below.
- 3. Give an example of a monotonic sequence that does not converge. $a_n = n$
- 4. Give an example of a bounded sequence that does not converge. $a_n = (-1)^n$

11.2: Series

- 1. What is the harmonic series? Does it converge or diverge?
 - The partial sums of the harmonic series $h_k = \sum_{n=1}^k \frac{1}{n}$. The series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges due to the Integral Test (comparison with $\int_0^\infty \frac{1}{x} dx$).
- 2. Decide whether $\sum_{n=1}^{\infty} 3 \cdot 2^n$ and $\sum_{n=1}^{\infty} 3/2^n$ converge or diverge. Find the limits if they converge. The first series diverges since |2| > 1. For the second $\sum_{n=1}^{\infty} 3/2^n = \frac{3}{2} \sum_{n=0}^{\infty} (1/2)^n = \frac{3}{2} \frac{1}{1-1/2} = 3$.

11.3-11.7: Lots of Convergence Tests

Converge or diverge?

1.
$$\sum_{n=1}^{\infty} \frac{3^n}{n!}$$
: converge
2.
$$\sum_{n=1}^{\infty} \frac{n^2}{n^3 + 1}$$
: diverge
3.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^3 + 1}}{n^2}$$
: diverge
4.
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$
: converge
5.
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^{1.1}}$$
: converge
6.
$$\sum_{n=1}^{\infty} \frac{n^{30}}{1.01^n}$$
: converge

For each of the following tests, do the following:

- 1. State what the test is.
- 2. Give an example of a series where the test proves convergence, if applicable.
- 3. Give an example of a series where the test proves divergence, if applicable.
- 4. Give an example of a series where the test is inconclusive or does not apply.
- Test For Divergence
 - 1. If $\lim_{n\to\infty} a_n \neq 0$ then $\sum_{n=1}^{\infty} a_n$ diverges.
 - 2. Not applicable: this test can only show that a series diverges.
 - 3. $a_n = 1, a_n = 1 1/n$, anything where $\lim_{n \to \infty} a_n \neq 0$.
 - 4. If $\lim_{n\to\infty} a_n = 0$ the test is inconclusive: the sequences 1/n and $1/n^2$ both converge to zero but the first series diverges and the second converges.
- P-series Test
 - 1. $\sum_{n=1}^{\infty} 1/n^p$ converges if p > 1 and diverges otherwise.
 - 2. $\sum_{n=1}^{\infty} 1/n^2$ converges.
 - 3. $\sum_{n=1}^{\infty} 1/n$ and $\sum_{n=1}^{\infty} 1/\sqrt{n}$ diverge.
 - 4. Does not apply directly to $1/\ln n$ or $1/(n^2 + n + 1)$, for example. You have to apply a comparison test first.
- Comparison Test
 - 1. If $a_n \ge b_n \ge 0$ and $\sum_{n=1}^{\infty} b_n$ diverges then $\sum_{n=1}^{\infty} a_n$ diverges. If $b_n \ge a_n \ge 0$ and $\sum_{n=1}^{\infty} b_n$ converges then $\sum_{n=1}^{\infty} a_n$ converges.
 - 2. $\sum_{n=1}^{\infty} (2 + \cos n)/n^2$ converges by comparison with $3/n^2$.
 - 3. $\sum_{n=1}^{\infty} (2 + \cos n)/n$ diverges by comparison with 1/n.
 - 4. Does not apply to functions such as $\sin n/n$ that have both positive and negative terms.
- Limit Comparison Test
 - 1. Also requires $a_n, b_n \ge 0$ (or $a_n, b_n \le 0$ for all n). If $\lim_{n\to\infty} a_n/b_n = C < \infty$ and $\sum_{n=1}^{\infty} b_n$ converges then $\sum_{n=1}^{\infty} a_n$ converges too. If $\sum_{n=1}^{\infty} a_n/b_n = C > 0$ and $\sum_{n=1}^{\infty} b_n$ diverges then $\sum_{n=1}^{\infty} a_n$ diverges too.
 - 2. $\sum_{n=1}^{\infty} (n + \sin n)/(n^3)$ converges by limit comparison with $1/n^2$
 - 3. $\sum_{n=1}^{\infty} (n \ln n)/n^2$ diverges by limit comparison with 1/n.
 - 4. Like the comparison test, LCT does not apply to functions that have both positive and negative terms.
- Alternating Series Test

- 1. If a_n is alternating, if $|a_{n+1}| \leq |a_n|$ for all large enough n, and $\lim_{n\to\infty} a_n = 0$, then $\sum_{n=1}^{\infty} a_n$ converges.
- 2. $(-1)^n/n$ converges.
- 3. Cannot be used to prove divergence.
- 4. Does not apply to $\sin(n)/n$ since it is not strictly alternating. Does not apply to $(1+2\cdot(-1)^n)/n$ since the terms are not decreasing in magnitude.
- Ratio Test
 - 1. Let $R = \lim_{n \to \infty} |a_{n+1}|/|a_n|$. If R < 1 then the series converges. If R > 1 the series diverges. If R = 1 the test is inconclusive.
 - 2. $\sum_{n=1}^{\infty} n^2/2^n$ converges.
 - 3. $\sum_{n=1}^{\infty} n!/5^n$ diverges (not that if R > 1 then the terms in the series do not even converge to zero).
 - 4. Inconclusive for 1/n, n^2 , $\ln(n)/n^5$, and in general all combinations of polynomial and logarithmic functions. Use only when exponentials and factorials appear.
- Root Test
 - 1. Let $R = \lim_{n \to \infty} \sqrt[n]{|a_n|}$. If R < 1 then the series converges. If R > 1 the series diverges. If R = 1 the test is inconclusive.
 - 2. The Root test gives the exact same results as the Ratio test. It is in general less useful; only use it for series with the form $\sum_{n=1}^{\infty} (G(n))^n$ for complicated functions G.

True/False!

- 1. If $\sum_{n=1}^{\infty} a_n$ is convergent then it is absolutely convergent. False: $a_n = 1/n$.
- 2. If $\sum_{n=1}^{\infty} a_n$ is absolutely convergent then it is convergent. True.
- 3. If the Ratio Test says that $\sum_{n=1}^{\infty} a_n$ converges then it converges absolutely.

True, since the results of the Ratio test only depend on the absolute values $|a_n|$. This means that for a power series conditional convergence can only happen at the endpoints of the interval.

- 4. If $\sum_{n=1}^{\infty} a_n$ converges but the Ratio Test is inconclusive then $\sum_{n=1}^{\infty} a_n$ converges conditionally. False: $1/n^2$ converges absolutely both at -1 and 1.
- 5. If $\sum_{n=1}^{\infty} a_n$ is an alternating series then it converges. False: $a_n = (-1)^n$.

11.8-10: Taylor Series

Find the Taylor series for the following functions up to the x^5 term:

1. $\sin x = x - x^3/3! + x^5/5! - \dots$ 2. $\cos x = 1 - x^2/2! + x^4/4! - \dots$ 3. $e^x = 1 + x + x^2/2! + x^3/3! + x^4/4! + x^5/5! + \dots$ 4. $\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + x^5 + \dots$ 5. $e^x \cos x = 1 + x - \frac{x^3}{3} - \frac{x^4}{6} - \frac{x^5}{30} + \dots$ 6. $\frac{x^2}{1+2x} = x^2 - 2x^3 + 4x^4 - 8x^5 + \dots$

Find power series that have the following radii of convergence:

1.
$$[-1,1] : \sum_{n=1}^{\infty} x^n/n^2$$

2. $(3,5) : \sum_{n=1}^{\infty} (x-4)^n$
3. $[2,3) : \sum_{n=1}^{\infty} 2^n (x-5/2)^n = \sum_{n=1}^{\infty} (2x-5)^n$
4. $(0,7] : \sum_{n=1}^{\infty} (-2/7)^n (x-7/2)^n$
5. $(-\infty,\infty) : \sum_{n=1}^{\infty} x^n/n!$
6. $\{4\} : \sum_{n=1}^{\infty} n! x^n$