Review: Chapter 11
 Friday, May 1

11.1: Sequences

True or False! As always, give a counterexample to the false statements.

1. If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent then $\left\{a_{n}+b_{n}\right\}$ is convergent.

True.
2. If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent then $\left\{a_{n} b_{n}\right\}$ is convergent.

True.
3. If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are divergent then $\left\{a_{n}+b_{n}\right\}$ is divergent.

False: $a_{n}=n, b_{n}=-n, a_{n}+b_{n}=0$.
4. If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are divergent then $\left\{a_{n} b_{n}\right\}$ is divergent.

False: $a_{n}=b_{n}=(-1)^{n}, a_{n} b_{n}=1$.
5. If f is continuous and $\left\{a_{n}\right\}$ converges then $\lim _{n \rightarrow \infty} f\left(a_{n}\right)$ exists.

True, and furthermore $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f\left(\lim _{n \rightarrow \infty} a_{n}\right)$.
6. If f is continuous and $\left\{a_{n}\right\}$ diverges then $\lim _{n \rightarrow \infty} f\left(a_{n}\right)$ does not exist.

False: If $f(x)=0$ for all x then $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=\lim _{n \rightarrow \infty} 0=0$ regardless of the sequence $\left\{a_{n}\right\}$.
Not True or False!

1. Define what it means for a sequence to be bounded.

There exists M such that $\left|a_{n}\right| \leq M$ for all n.
2. What are the conditions for the Monotone Convergence Theorem?

MTC: if a_{n} is monotonic (either increasing or decreasing) and bounded then $\left\{a_{n}\right\}$ converges.
The rationale is that a sequence converges either if it is increasing and bounded above or if is decreasing and bounded below.
3. Give an example of a monotonic sequence that does not converge.
$a_{n}=n$
4. Give an example of a bounded sequence that does not converge.
$a_{n}=(-1)^{n}$

11.2: Series

1. What is the harmonic series? Does it converge or diverge?

The partial sums of the harmonic series $h_{k}=\sum_{n=1}^{k} \frac{1}{n}$. The series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges due to the Integral Test (comparison with $\int_{0}^{\infty} \frac{1}{x} d x$).
2. Decide whether $\sum_{n=1}^{\infty} 3 \cdot 2^{n}$ and $\sum_{n=1}^{\infty} 3 / 2^{n}$ converge or diverge. Find the limits if they converge.

The first series diverges since $|2|>1$. For the second $\sum_{n=1}^{\infty} 3 / 2^{n}=\frac{3}{2} \sum_{n=0}^{\infty}(1 / 2)^{n}=\frac{3}{2} \frac{1}{1-1 / 2}=3$.

11.3-11.7: Lots of Convergence Tests

Converge or diverge?

1. $\sum_{n=1}^{\infty} \frac{3^{n}}{n!}$: converge
2. $\sum_{n=1}^{\infty} \frac{n^{2}}{n^{3}+1}$: diverge
3. $\sum_{n=1}^{\infty} \frac{\sqrt{n^{3}+1}}{n^{2}}$: diverge
4. $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$: converge
5. $\sum_{n=1}^{\infty} \frac{\ln n}{n^{1.1}}$: converge
6. $\sum_{n=1}^{\infty} \frac{n^{30}}{1.01^{n}}$: converge

For each of the following tests, do the following:

1. State what the test is.
2. Give an example of a series where the test proves convergence, if applicable.
3. Give an example of a series where the test proves divergence, if applicable.
4. Give an example of a series where the test is inconclusive or does not apply.

- Test For Divergence

1. If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ then $\sum_{n=1}^{\infty} a_{n}$ diverges.
2. Not applicable: this test can only show that a series diverges.
3. $a_{n}=1, a_{n}=1-1 / n$, anything where $\lim _{n \rightarrow \infty} a_{n} \neq 0$.
4. If $\lim _{n \rightarrow \infty} a_{n}=0$ the test is inconclusive: the sequences $1 / n$ and $1 / n^{2}$ both converge to zero but the first series diverges and the second converges.

- P-series Test

1. $\sum_{n=1}^{\infty} 1 / n^{p}$ converges if $p>1$ and diverges otherwise.
2. $\sum_{n=1}^{\infty} 1 / n^{2}$ converges.
3. $\sum_{n=1}^{\infty} 1 / n$ and $\sum_{n=1}^{\infty} 1 / \sqrt{n}$ diverge.
4. Does not apply directly to $1 / \ln n$ or $1 /\left(n^{2}+n+1\right)$, for example. You have to apply a comparison test first.

- Comparison Test

1. If $a_{n} \geq b_{n} \geq 0$ and $\sum_{n=1}^{\infty} b_{n}$ diverges then $\sum_{n=1}^{\infty} a_{n}$ diverges. If $b_{n} \geq a_{n} \geq 0$ and $\sum_{n=1}^{\infty} b_{n}$ converges then $\sum_{n=1}^{\infty} a_{n}$ converges.
2. $\sum_{n=1}^{\infty}(2+\cos n) / n^{2}$ converges by comparison with $3 / n^{2}$.
3. $\sum_{n=1}^{\infty}(2+\cos n) / n$ diverges by comparison with $1 / n$.
4. Does not apply to functions such as $\sin n / n$ that have both positive and negative terms.

- Limit Comparison Test

1. Also requires $a_{n}, b_{n} \geq 0$ (or $a_{n}, b_{n} \leq 0$ for all n). If $\lim _{n \rightarrow \infty} a_{n} / b_{n}=C<\infty$ and $\sum_{n=1}^{\infty} b_{n}$ converges then $\sum_{n=1}^{\infty} a_{n}$ converges too. If $\sum_{n=1}^{\infty} a_{n} / b_{n}=C>0$ and $\sum_{n=1}^{\infty} b_{n}$ diverges then $\sum_{n=1}^{\infty} a_{n}$ diverges too.
2. $\sum_{n=1}^{\infty}(n+\sin n) /\left(n^{3}\right)$ converges by limit comparison with $1 / n^{2}$
3. $\sum_{n=1}^{\infty}(n-\ln n) / n^{2}$ diverges by limit comparison with $1 / n$.
4. Like the comparison test, LCT does not apply to functions that have both positive and negative terms.

- Alternating Series Test

1. If a_{n} is alternating, if $\left|a_{n+1}\right| \leq\left|a_{n}\right|$ for all large enough n, and $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum_{n=1}^{\infty} a_{n}$ converges.
2. $(-1)^{n} / n$ converges.
3. Cannot be used to prove divergence.
4. Does not apply to $\sin (n) / n$ since it is not strictly alternating. Does not apply to $\left(1+2 \cdot(-1)^{n}\right) / n$ since the terms are not decreasing in magnitude.

- Ratio Test

1. Let $R=\lim _{n \rightarrow \infty}\left|a_{n+1}\right| /\left|a_{n}\right|$. If $R<1$ then the series converges. If $R>1$ the series diverges. If $R=1$ the test is inconclusive.
2. $\sum_{n=1}^{\infty} n^{2} / 2^{n}$ converges.
3. $\sum_{n=1}^{\infty} n!/ 5^{n}$ diverges (not that if $R>1$ then the terms in the series do not even converge to zero).
4. Inconclusive for $1 / n, n^{2}, \ln (n) / n^{5}$, and in general all combinations of polynomial and logarithmic functions. Use only when exponentials and factorials appear.

- Root Test

1. Let $R=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}$. If $R<1$ then the series converges. If $R>1$ the series diverges. If $R=1$ the test is inconclusive.
2. The Root test gives the exact same results as the Ratio test. It is in general less useful; only use it for series with the form $\sum_{n=1}^{\infty}(G(n))^{n}$ for complicated functions G.

True/False!

1. If $\sum_{n=1}^{\infty} a_{n}$ is convergent then it is absolutely convergent.

False: $a_{n}=1 / n$.
2. If $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent then it is convergent.

True.
3. If the Ratio Test says that $\sum_{n=1}^{\infty} a_{n}$ converges then it converges absolutely.

True, since the results of the Ratio test only depend on the absolute values $\left|a_{n}\right|$. This means that for a power series conditional convergence can only happen at the endpoints of the interval.
4. If $\sum_{n=1}^{\infty} a_{n}$ converges but the Ratio Test is inconclusive then $\sum_{n=1}^{\infty} a_{n}$ converges conditionally.

False: $1 / n^{2}$ converges absolutely both at -1 and 1 .
5. If $\sum_{n=1}^{\infty} a_{n}$ is an alternating series then it converges.

False: $a_{n}=(-1)^{n}$.

11.8-10: Taylor Series

Find the Taylor series for the following functions up to the x^{5} term:

1. $\sin x=x-x^{3} / 3!+x^{5} / 5!-\ldots$
2. $\cos x=1-x^{2} / 2!+x^{4} / 4!-\ldots$
3. $e^{x}=1+x+x^{2} / 2!+x^{3} / 3!+x^{4} / 4!+x^{5} / 5!+\ldots$
4. $\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+x^{5}+\ldots$
5. $e^{x} \cos x=1+x-x^{3} / 3-x^{4} / 6-x^{5} / 30+\ldots$
6. $\frac{x^{2}}{1+2 x}=x^{2}-2 x^{3}+4 x^{4}-8 x^{5}+\ldots$

Find power series that have the following radii of convergence:

1. $[-1,1]: \sum_{n=1}^{\infty} x^{n} / n^{2}$
2. $(3,5): \sum_{n=1}^{\infty}(x-4)^{n}$
3. $[2,3): \sum_{n=1}^{\infty} 2^{n}(x-5 / 2)^{n}=\sum_{n=1}^{\infty}(2 x-5)^{n}$
4. $(0,7]: \sum_{n=1}^{\infty}(-2 / 7)^{n}(x-7 / 2)^{n}$
5. $(-\infty, \infty): \sum_{n=1}^{\infty} x^{n} / n!$
6. $\{4\}: \sum_{n=1}^{\infty} n!x^{n}$
