
Review: Chapter 11
Friday, May 1

11.1: Sequences

True or False! As always, give a counterexample to the false statements.

1. If {an}and {bn}are convergent then {an + bn}is convergent.

True.

2. If {an}and {bn}are convergent then {anbn}is convergent.

True.

3. If {an}and {bn}are divergent then {an + bn}is divergent.

False: an = n, bn = −n, an + bn = 0.

4. If {an}and {bn}are divergent then {anbn}is divergent.

False: an = bn = (−1)n, anbn = 1.

5. If f is continuous and {an}converges then limn→∞ f(an) exists.

True, and furthermore limn→∞ f(an) = f(limn→∞ an).

6. If f is continuous and {an}diverges then limn→∞ f(an) does not exist.

False: If f(x) = 0 for all x then limn→∞ f(an) = limn→∞ 0 = 0 regardless of the sequence {an}.

Not True or False!

1. Define what it means for a sequence to be bounded.

There exists M such that |an| ≤M for all n.

2. What are the conditions for the Monotone Convergence Theorem?

MTC: if an is monotonic (either increasing or decreasing) and bounded then {an} converges.

The rationale is that a sequence converges either if it is increasing and bounded above or if it is
decreasing and bounded below.

3. Give an example of a monotonic sequence that does not converge.

an = n

4. Give an example of a bounded sequence that does not converge.

an = (−1)n

11.2: Series

1. What is the harmonic series? Does it converge or diverge?

The partial sums of the harmonic series hk =
∑k

n=1
1
n . The series

∑∞
n=1

1
n diverges due to the Integral

Test (comparison with
∫∞
0

1
x dx).

2. Decide whether

∞∑
n=1

3 · 2n and

∞∑
n=1

3/2n converge or diverge. Find the limits if they converge.

The first series diverges since |2| > 1. For the second
∑∞

n=1 3/2n = 3
2

∑∞
n=0(1/2)n = 3

2
1

1−1/2 = 3.

11.3-11.7: Lots of Convergence Tests

Converge or diverge?
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1.

∞∑
n=1

3n

n!
: converge

2.

∞∑
n=1

n2

n3 + 1
: diverge

3.

∞∑
n=1

√
n3 + 1

n2
: diverge

4.

∞∑
n=1

n2

2n
: converge

5.

∞∑
n=1

lnn

n1.1
: converge

6.

∞∑
n=1

n30

1.01n
: converge

For each of the following tests, do the following:

1. State what the test is.

2. Give an example of a series where the test proves convergence, if applicable.

3. Give an example of a series where the test proves divergence, if applicable.

4. Give an example of a series where the test is inconclusive or does not apply.

• Test For Divergence

1. If limn→∞ an 6= 0 then
∑∞

n=1 an diverges.

2. Not applicable: this test can only show that a series diverges.

3. an = 1, an = 1− 1/n, anything where limn→∞ an 6= 0.

4. If limn→∞ an = 0 the test is inconclusive: the sequences 1/n and 1/n2 both converge to zero but
the first series diverges and the second converges.

• P-series Test

1.
∑∞

n=1 1/np converges if p > 1 and diverges otherwise.

2.
∑∞

n=1 1/n2 converges.

3.
∑∞

n=1 1/n and
∑∞

n=1 1/
√
n diverge.

4. Does not apply directly to 1/ lnn or 1/(n2 +n+ 1), for example. You have to apply a comparison
test first.

• Comparison Test

1. If an ≥ bn ≥ 0 and
∑∞

n=1 bn diverges then
∑∞

n=1 an diverges. If bn ≥ an ≥ 0 and
∑∞

n=1 bn
converges then

∑∞
n=1 an converges.

2.
∑∞

n=1(2 + cosn)/n2 converges by comparison with 3/n2.

3.
∑∞

n=1(2 + cosn)/n diverges by comparison with 1/n.

4. Does not apply to functions such as sinn/n that have both positive and negative terms.

• Limit Comparison Test

1. Also requires an, bn ≥ 0 (or an, bn ≤ 0 for all n). If limn→∞ an/bn = C < ∞ and
∑∞

n=1 bn
converges then

∑∞
n=1 an converges too. If

∑∞
n=1 an/bn = C > 0 and

∑∞
n=1 bn diverges then∑∞

n=1 an diverges too.

2.
∑∞

n=1(n + sinn)/(n3) converges by limit comparison with 1/n2

3.
∑∞

n=1(n− lnn)/n2 diverges by limit comparison with 1/n.

4. Like the comparison test, LCT does not apply to functions that have both positive and negative
terms.

• Alternating Series Test
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1. If an is alternating, if |an+1| ≤ |an| for all large enough n, and limn→∞ an = 0, then
∑∞

n=1 an
converges.

2. (−1)n/n converges.

3. Cannot be used to prove divergence.

4. Does not apply to sin(n)/n since it is not strictly alternating. Does not apply to (1 + 2 · (−1)n)/n
since the terms are not decreasing in magnitude.

• Ratio Test

1. Let R = limn→∞ |an+1|/|an|. If R < 1 then the series converges. If R > 1 the series diverges. If
R = 1 the test is inconclusive.

2.
∑∞

n=1 n
2/2n converges.

3.
∑∞

n=1 n!/5n diverges (not that if R > 1 then the terms in the series do not even converge to zero).

4. Inconclusive for 1/n, n2, ln(n)/n5, and in general all combinations of polynomial and logarithmic
functions. Use only when exponentials and factorials appear.

• Root Test

1. Let R = limn→∞
n
√
|an|. If R < 1 then the series converges. If R > 1 the series diverges. If R = 1

the test is inconclusive.

2. The Root test gives the exact same results as the Ratio test. It is in general less useful; only use
it for series with the form

∑∞
n=1(G(n))n for complicated functions G.

True/False!

1. If
∑∞

n=1 an is convergent then it is absolutely convergent.

False: an = 1/n.

2. If
∑∞

n=1 an is absolutely convergent then it is convergent.

True.

3. If the Ratio Test says that
∑∞

n=1 an converges then it converges absolutely.

True, since the results of the Ratio test only depend on the absolute values |an|. This means that for
a power series conditional convergence can only happen at the endpoints of the interval.

4. If
∑∞

n=1 an converges but the Ratio Test is inconclusive then
∑∞

n=1 an converges conditionally.

False: 1/n2 converges absolutely both at −1 and 1.

5. If
∑∞

n=1 an is an alternating series then it converges.

False: an = (−1)n.

11.8-10: Taylor Series

Find the Taylor series for the following functions up to the x5 term:

1. sinx = x− x3/3! + x5/5!− . . .

2. cosx = 1− x2/2! + x4/4!− . . .

3. ex = 1 + x + x2/2! + x3/3! + x4/4! + x5/5! + . . .

4. 1
1−x = 1 + x + x2 + x3 + x4 + x5 + . . .
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5. ex cosx = 1 + x− x3/3− x4/6− x5/30 + . . .

6. x2

1+2x = x2 − 2x3 + 4x4 − 8x5 + . . .

Find power series that have the following radii of convergence:

1. [−1, 1] :

∞∑
n=1

xn/n2

2. (3, 5) :

∞∑
n=1

(x− 4)n

3. [2, 3) :

∞∑
n=1

2n(x− 5/2)n =

∞∑
n=1

(2x− 5)n

4. (0, 7] :

∞∑
n=1

(−2/7)n(x− 7/2)n

5. (−∞,∞) :

∞∑
n=1

xn/n!

6. {4} :

∞∑
n=1

n!xn
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