11.5: Alternating Series Wednesday, March 4

True or False?

For all of these problems assume that $a_n, b_n > 0$ for all natural numbers n. If the statement is false, find a pair of functions (a_n, b_n) that serve as a counterexample.

- 1. If $a_n < b_n$ for all n and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.
- 2. If $a_n < b_n$ for all n > 1000 and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.
- 3. If $a_n > b_n$ for all n and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.
- 4. If $\lim_{n\to\infty} a_n/b_n = 5$ and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.
- 5. If $\lim_{n\to\infty} a_n/b_n = 5$ and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.
- 6. If $\lim_{n\to\infty} a_n/b_n = 0$ and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ converges.
- 7. If $\lim_{n\to\infty} a_n/b_n = \infty$ and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.
- 8. $\ln(n) < \sqrt[3]{n}$ for all natural numbers n.

Suppose I claim that if $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ both converge then $\sum_{n=1}^{\infty} a_n/b_n$ converges. Decide whether each of the following pairs of sequences is an example of the claim, a counterexample, or irrelevant:

1. $a_n = 1/n, b_n = 1/n^3$ 3. $a_n = 1/n^3, b_n = 1/2^n$ 5. $a_n = 1/2^n, b_n = 1/n^2$ 2. $a_n = 1/n^4, b_n = 1/n^2$ 4. $a_n = 1/n^2, b_n = 1/n^2$ 6. $a_n = 1/n^2, b_n = 1/n^2$

Terms Sometimes Cancel

Decide whether the following series converge or diverge:

1.
$$\sum_{n=1}^{\infty} \frac{1}{n} - \frac{n}{n^2 + n + 3}$$

2.
$$\sum_{n=1}^{\infty} \sqrt{n+1} - \sqrt{n}$$

3.
$$\sum_{n=1}^{\infty} \frac{1}{n} - \frac{\pi}{n+\pi}$$

4.
$$\sum_{n=1}^{\infty} \sqrt{n^3 + 1} - \sqrt{n^3}$$

Limit Comparison Test

Decide whether each of the following series converge or diverge, and find an appropriate sequence b_n to use with the Limit Comparison Test.

1.
$$\sum_{n=1}^{\infty} \frac{1}{\ln n}$$

2. $\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$
3. $\sum_{n=1}^{\infty} \frac{n}{2^n}$
4. $\sum_{n=1}^{\infty} \frac{n^2 \ln n}{3^n}$
5. $\sum_{n=1}^{\infty} \frac{n^5}{1.002^n}$
6. $\sum_{n=1}^{\infty} \frac{\ln^5(n)}{n^{1.002}}$

Alternating Series and Absolute Convergence

- 1. If $s = \sum_{n=1}^{\infty} (-1)^n b_n$ is a series with
 - (a) $b_{n+1} \leq b_n$ for all n (or n > N, for some N)
 - (b) $\lim_{n\to\infty} b_n = 0$

then the series is convergent.

- 2. $|R_n| = |s s_n| \le b_{n+1}$.
- 3. If $s_n \ge s_{n+1}$, then $s_{n+1} \le s \le s_n$.
- 4. (Absolute Convergence) If $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.

Some Series of Note

- 1. $\sin(x) = x \frac{x^3}{3!} + \frac{x^5}{5!} \dots$ Show that this power series converges for all x.
- 2. $\cos(x) = 1 \frac{x^2}{2!} + \frac{x^4}{4!} \dots$ Show that this power series converges for all x.
- 3. $\ln(1+x) = x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4} + \dots$ Show that $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots$ converges and is equal to $\ln(2)$.
- 4. Can you use the same power series to find $\ln(3)$? How about $\ln(0)$ or $\ln(2.001)$?
- 5. $\arctan(x) = x x^3/3 + x^5/5 x^7/7 + \dots$ Show that $1 1/3 + 1/5 1/7 + \dots$ converges and conclude that it is equal to $\pi/4$.
- 6. Prove that $\sum_{n=1}^{\infty} \cos(n)/n^2$ converges.
- 7. Can you tell whether $\sum_{n=1}^{\infty} \cos(n)/n$ converges?