11.5: Alternating Series
 Wednesday, March 4

True or False?

For all of these problems assume that $a_{n}, b_{n}>0$ for all natural numbers n. If the statement is false, find a pair of functions $\left(a_{n}, b_{n}\right)$ that serve as a counterexample.

1. If $a_{n}<b_{n}$ for all n and $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.

Answer: True.
2. If $a_{n}<b_{n}$ for all $n>1000$ and $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.

Answer: True.
3. If $a_{n}>b_{n}$ for all n and $\sum_{n=1}^{\infty} b_{n}$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ diverges.

Answer: True.
4. If $\lim _{n \rightarrow \infty} a_{n} / b_{n}=5$ and $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.

Answer: True.
5. If $\lim _{n \rightarrow \infty} a_{n} / b_{n}=5$ and $\sum_{n=1}^{\infty} b_{n}$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ diverges.

Answer: True.
6. If $\lim _{n \rightarrow \infty} a_{n} / b_{n}=0$ and $\sum_{n=1}^{\infty} b_{n}$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ converges.

Answer: False. $a_{n}=1 / n, b_{n}=1$.
7. If $\lim _{n \rightarrow \infty} a_{n} / b_{n}=\infty$ and $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.

Answer: False. $a_{n}=n, b_{n}=1 / n^{2}$.
8. $\ln (n)<\sqrt[3]{n}$ for all natural numbers n.

Answer: False. It holds true for $n \geq 94$ and $n \leq 6$, but any value of n in between will serve as a counterexample.

Suppose I claim that if $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ both converge then $\sum_{n=1}^{\infty} a_{n} / b_{n}$ converges. Decide whether each of the following pairs of sequences is an example of the claim, a counterexample, or irrelevant:

1. $a_{n}=1 / n, b_{n}=1 / n^{3}$: irrelevant, since a_{n} does not converge.
2. $a_{n}=1 / n^{4}, b_{n}=1 / n^{2}$: example
3. $a_{n}=1 / n^{3}, b_{n}=1 / 2^{n}$: counterexample
4. $a_{n}=1 / n^{2}, b_{n}=1 / n^{2}$: counterexample
5. $a_{n}=1 / 2^{n}, b_{n}=1 / n^{2}$: example
6. $a_{n}=1 / n^{2}, b_{n}=1 / n$: irrelevant, since b_{n} does not converge.

Terms Sometimes Cancel

Decide whether the following series converge or diverge:

1. $\sum_{n=1}^{\infty} \frac{1}{n}-\frac{n}{n^{2}+n+3}$ converges
2. $\sum_{n=1}^{\infty} \sqrt{n+1}-\sqrt{n}$ diverges
3. $\sum_{n=1}^{\infty} \frac{1}{n}-\frac{\pi}{n+\pi}$ diverges (the highest order terms do not cancel out fully)
4. $\sum_{n=1}^{\infty} \sqrt{n^{3}+1}-\sqrt{n^{3}}$ converges

Limit Comparison Test

Decide whether each of the following series converge or diverge, and find an appropriate sequence b_{n} to use with the Limit Comparison Test.

1. $\sum_{n=2}^{\infty} \frac{1}{\ln n}$: diverges $\left(b_{n}=1 / n\right)$
2. $\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}$: converges $\left(b_{n}=\sqrt{n} / n^{2}=1 / n^{3 / 2}\right)$
3. $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$: converges $\left(b_{n}=(1.5 / 2)^{n}=(3 / 4)^{n}\right)$
4. $\sum_{n=1}^{\infty} \frac{n^{2} \ln n}{3^{n}}$: converges $\left(b_{n}=(2 / 3)^{n}\right)$
5. $\sum_{n=1}^{\infty} \frac{n^{5}}{1.002^{n}}$: converges $\left(b_{n}=(1.001 / 1.002)^{n}\right)$
6. $\sum_{n=1}^{\infty} \frac{\ln ^{5}(n)}{n^{1.002}}$ converges $\left(b_{n}=n^{0.001} / n^{1.002}=\frac{1}{n^{1.001}}\right)$

Alternating Series and Absolute Convergence

1. If $s=\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ is a series with
(a) $b_{n+1} \leq b_{n}$ for all n (or $n>N$, for some N)
(b) $\lim _{n \rightarrow \infty} b_{n}=0$
then the series is convergent.
2. $\left|R_{n}\right|=\left|s-s_{n}\right| \leq b_{n+1}$.
3. If $s_{n} \geq s_{n+1}$, then $s_{n+1} \leq s \leq s_{n}$.
4. (Absolute Convergence) If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.

Some Series of Note

1. $\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots$. Show that this power series converges for all x.

The given series converges because 1) it is alternating (both for $x>0$ and $x<0 \ldots$ check this!), 2) its terms are EVENTUALLY decreasing in magnitude for any fixed x (since factorial growth outweighs exponential growth), and 3) its terms have a limit of zero as $n \rightarrow \infty$, so the Alternating Series test applies.
2. $\cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots$. Show that this power series converges for all x.

The given series converges because 1) it is alternating, 2) its terms are EVENTUALLY decreasing in magnitude for any fixed x (since factorial growth outweighs exponential growth), and 3) its terms have a limit of zero as $n \rightarrow \infty$, so the Alternating Series test applies.
3. $\ln (1+x)=x-x^{2} / 2+x^{3} / 3-x^{4} / 4+\ldots$ Show that $1-1 / 2+1 / 3-1 / 4+\ldots$ converges and is equal to $\ln (2)$.

The given series converges because 1) it is alternating, 2) its terms are strictly decreasing in magnitude, and 3) its terms have a limit of zero as $n \rightarrow \infty$, so the Alternating Series test applies.
The limit of the series is $\ln (2)$ since the series comes from plugging $x=1$ into the power series formula for $\ln (1+x)$.
4. Can you use the same power series to find $\ln (3)$? How about $\ln (0)$ or $\ln (2.001)$?

Nope, nope, and nope. These would correspond to $\ln (1+2), \ln (1+(-1))$, and $\ln (1+1.001)$. The first and third have exponential growth in the numerator, so the limit of the terms in the series is not zero. The second series yields the Harmonic series $1+1 / 2+1 / 3+1 / 4+\ldots$, which does not converge.
5. $\arctan (x)=x-x^{3} / 3+x^{5} / 5-x^{7} / 7+\ldots$ Show that $1-1 / 3+1 / 5-1 / 7+\ldots$ converges and conclude that it is equal to $\pi / 4$.
The given series converges because 1) it is alternating, 2) its terms are strictly decreasing in magnitude, and 3) its terms have a limit of zero as $n \rightarrow \infty$, so the Alternating Series test applies.
The limit of the series is $\pi / 4$ since $\pi / 4=\arctan (1)$.
6. Prove that $\sum_{n=1}^{\infty} \cos (n) / n^{2}$ converges.
$\left|\cos (n) / n^{2}\right| \leq 1 / n^{2}$, so the series converges absolutely because $\sum_{n=1}^{\infty} 1 / n^{2}$ converges.
7. Can you tell whether $\sum_{n=1}^{\infty} \cos (n) / n$ converges?

Not without difficulty, since the series isn't alternating and the terms in the series aren't strictly decreasing in magnitude.

