Math 1B, Second Midterm Examination 9:00-10:00pm, N.Reshetikhin, March 21, 2014

Student's Name:

TA's name:

Student's i.d. number:

 $1.(24 \ points)$ For each of the following series determine whether the series is divergent, conditionally convergent, or absolutely convergent. Indicate which tests you used.

a) (8 points)

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{(n^2+1)^{1/3}}$$

b) (8 points)
$$\sum_{n=1}^{\infty} \sin(n) \sqrt{\frac{n^2 + n}{n^2 + 1}}$$

c) (8 points)
$$\sum_{n=6}^{\infty} \frac{\sin(n^2 + 2)}{n(n-5)}$$

2.(20 points) These are True-False questions. If the answer is True, you should explain why (concisely). If the answer is False, you should give a counter-example.

a) (5 points) The series $\sum_{n=1}^{\infty} a_n$ converges absolutely, then $\sum_{n=1}^{\infty} \sin(\ln(n))a_n$ converges.

b) (5 points) The sequence $\{b_n\}$ is divergent. The sequence $\{a_n\}$ converges, then the sequence $\{a_nb_n\}_{n=1}^{\infty}$ diverges.

c) (5 points) The series $\sum_{n=1}^{\infty} a_n$ converges absolutely and the sequence $\{b_n\}$ is bounded, then the series $\sum_{n=1}^{\infty} a_n b_n$ converges.

d) (5 points) The series $\sum_{n=1}^{\infty} a_n$ converges, then the series $\sum_{n=1}^{\infty} a_n^2$ converges.

 $3.(20 \ points) Find the first three non-zero terms of the the Taylor series about <math display="inline">x=0$ for

$$f(x) = (1+x)\ln(1+x^2)$$

 $4.(21 \ points)$ Find the interval of convergence for the power series

.

$$\sum_{n=1}^{\infty} (-1)^n \frac{(2x-1)^n}{n}$$

5.(15 points)Answer True or False. You do not have to show your work.

a) (3 points) If $\sum_{n=1}^{\infty} a_n (x-1)^n$ converges at x = 4 and diverges at x = -2, then it converges at x = -1.

b) (3 points) If a series $\sum_{n=1}^{\infty} a_n 3^n$ converges, then $\sum_{n=1}^{\infty} a_n 2^n$ converges.

c) (3 points) If the series $\sum_{n=1}^{\infty} a_n$ converges conditionally, then the radius of convergence of $\sum_{n=1}^{\infty} a_n (x-1)^n$ is 1.

d) (3 points) It is possible that the series $\sum_{n=1}^{\infty} a_n 3^n$ converges absolutely, but the series $\sum_{n=1}^{\infty} a_n (-2)^n$ diverges.

e) (3 points) If the series $\sum_{n=1}^{\infty} a_n x^n$ has radius of convergence 1, then $\sum_{n=1}^{\infty} \frac{a_n}{n^3}$ converges.