Midterm 2, Spring 2014–Solutions

- 1. For each of the following series determine whether the series is divergent, conditionally convergent, or absolutely convergent. Indicate which tests you used.
 - (a)

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{(n^2+1)^{1/3}}$$

The series is alternating, it has a limit of zero, and the terms are decreasing in magnitude, so by the Alternating Series test it converges. Since $\lim_{n\to\infty} \frac{1}{(n^2+1)^{1/3}}(n^{2/3}) = 1$ and $\sum_{n=1}^{\infty} \frac{1}{n^{2/3}}$ diverges by the p-test, $\sum_{n=1}^{\infty} \frac{1}{(n^2+1)^{1/3}}$ diverges by the Limit Comparison Test (note: a direct comparison to $1/n^{2/3}$ will not work since $1/(n^2 + 1)^{1/3}$ is smaller).

The series is therefore convergent but not absolutely convergent, and so is conditionally convergent.

(b)

$$\sum_{n=1}^{\infty} \sin(n) \sqrt{\frac{n^2 + n}{n^2 + 1}}$$

Since $\lim_{n\to\infty} \sqrt{\frac{n^2+n}{n^2+1}} = 1$ but $\lim_{n\to\infty} \sin(n)$ does not exist, $\lim_{n\to\infty} \sin(n) \sqrt{\frac{n^2+n}{n^2+1}}$ does not exist. The series therefore diverges by the Test For Divergence.

(c)

$$\sum_{n=6}^{\infty} \frac{\sin(n^2 + 2)}{n(n-5)}$$

Since $|\sin(x)| \leq 1$ for all $x \in \mathbb{R}$, it follows that $|\frac{\sin(n^2+2)}{n(n-5)}| \leq \frac{1}{n(n-5)}$. Since $\lim_{n\to\infty} \frac{1}{n(n-5)}(n^2) = 1$, $\sum_{n=6}^{\infty} \frac{1}{n(n-5)}$ converges by the Limit Comparison Test. The series $\sum_{n=6}^{\infty} \frac{\sin(n^2+2)}{n(n-5)}$ is therefore absolutely convergent.

- 2. True/False. If true, explain why (concisely). If false, give a counterexample.
 - (a) If the series $\sum_{n=1}^{\infty} a_n$ converges absolutely, then $\sum_{n=1}^{\infty} \sin(\ln(n))a_n$ converges. True. Since $|\sin(\ln(n))a_n| \le |a_n| \ (|\sin(x)| \le 1)$, the Convergence test implies that $\sum_{n=1}^{\infty} \sin(\ln(n))a_n$ also converges absolutely.
 - (b) If {a_n} converges but {b_n} diverges, then {a_nb_n} diverges.
 False: a_n = 0 is a (trivial) counterexample.
 Note: all counterexamples here will at least require lim_{n→∞} a_n = 0.
 - (c) If $\sum_{n=1}^{\infty} a_n$ converges absolutely and $\{b_n\}$ is bounded, then $\sum_{n=1}^{\infty} a_n b_n$ converges. True: If b_n is bounded then there is some M such that $|b_n| < M$ for all $n \in \mathbb{N}$. Then $\sum_{n=1}^{\infty} |a_n b_n| \le \sum_{n=1}^{\infty} M \cdot |a_n| = M \sum_{n=1}^{\infty} |a_n|$, which converges. Therefore $\sum_{n=1}^{\infty} a_n b_n$ converges absolutely. Note: The condition that $\sum_{n=1}^{\infty} a_n$ converges *absolutely* is necessary here. Otherwise $a_n = (-1)^n/n$, $b_n = (-1)^n$ could serve as a counterexample.
 - (d) If the series $\sum_{n=1}^{\infty} a_n$ converges then $\sum_{n=1}^{\infty} a_n^2$ converges. False: $a_n = (-1)^n / \sqrt{n}$ serves as a counterexample. Note: If it were also specified that $a_n > 0$ for all $n \in \mathbb{N}$, then the statement would be true by the Comparison Test: $\lim_{n\to\infty} a_n = 0$ since $\sum_{n=1}^{\infty} a_n$ converges, so there exists an M such that $a_n < 1$ for all n > M, and therefore $a_n^2 < a_n$ for all n > M.

3. Find the first three non-zero terms of the Taylor series about x = 0 for

$$f(x) = (1+x)\ln(1+x^2)$$

Taking derivatives here would be a pain, so use the fact that you have the expansion for $\ln(1 + x)$ on your cheat sheet (hint, hint):

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$
$$\ln(1+x^2) = \frac{x^2 - \frac{x^4}{2} + \dots}{(1+x)\ln(1+x^2)} = \frac{x^2 + \frac{x^3}{3} - \frac{x^4}{2} - \frac{x^5}{2} + \dots}$$

We know that we can cut the expansion for $\ln(1 + x^2)$ off at $x^2 - x^4/2$ because the next power will be x^6 but we only need the first three non-zero terms (i.e. x^2, x^3, x^4) for the answer.

4. Find the interval of convergence for the power series

$$\sum_{n=1}^{\infty} (-1)^n \frac{(2x-1)^n}{n}$$

Using the ratio test, we get

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{n|2x-1|^{n+1}}{(n+1)|2x-1|^n}$$
$$= \lim_{n \to \infty} \frac{n}{n+1}|2x-1|$$
$$= |2x-1|$$

Since the ratio test says that the series converges when |r| < 1, we know that the power series will converge when

$$|2x - 1| < 1$$

 $-1 < 2x - 1 < 1$
 $0 < 2x < 2$
 $0 < x < 1$

Then plugging in x = 0, we get $\sum_{n=1}^{\infty} \frac{1}{n}$, which diverges. Plugging in x = 1 gives $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$, which converges by the Alternating Series test. The interval of convergence is therefore (0, 1]. Check #1 to

confirm: when we plug in the numbers 0 and 1 for x, the exponential parts of the series become 1^n and $(-1)^n$, respectively. This will always be the case at the borders of the interval. Check #2 to confirm:

The exponential part (ignoring the $(-1)^n$) is $(2x - 1)^n = 2^n (x - \frac{1}{2})^n$, so the center of convergence is 1/2 and the radius is also 1/2, giving an interval of (0, 1). Since the non-exponential part is $\frac{1}{n}$ we expect exactly one of the two endpoints to converge.

- 5. True or False: You do not have to show your work.
 - (a) If ∑_{n=1}[∞] a_n(x − 1)ⁿ converges at x = 4 and diverges at x = −2, then it converges at x = −1. True. The interval of convergence has center x = 1 and radius at least 3 (since it converges at x = 4). −1 is within 3 of x = 1, and so the series converges at x = −1. Note that since −2 is also distance 3 from x = 1, the interval of convergence must be (−2, 4] precisely.
 - (b) If a series ∑_{n=1}[∞] a_n3ⁿ converges, then ∑_{n=1}[∞] a_n2ⁿ converges. True. The Ratio Test combined with the fact that ∑_{n=1}[∞] a_n3ⁿ converges implies that lim_{n→∞} 3|a_{n+1}/|a_n| ≤ 1. Applying the Ratio test to the second series then gives lim_{n→∞} 2|a_{n+1}|/|a_n| < 1, which shows that it converges. Also: one could think of the series ∑_{n=1}[∞] a_n3ⁿ as the power series a_nxⁿ (which has a center of 0) converging at x = 3. The power series therefore has a radius of at least 3, and so converges at x = 2.
 - (c) If the series $\sum_{n=1}^{\infty} a_n$ converges conditionally, then the radius of convergence of $\sum_{n=1}^{\infty} a_n (x-1)^n$ is 1.

True, since for $\sum_{n=1}^{\infty} a_n$ to converge conditionally it must look something like $1/n, 1/\ln n$, or $1/\sqrt{n}$. None of these grow or decay as fast as any exponential function (since then $\sum_{n=1}^{\infty} a_n$ would converge absolutely), and therefore these terms do not affect the radius of convergence. This means that $\sum_{n=1}^{\infty} a_n (x-1)^n$ has the same radius of convergence as $\sum_{n=1}^{\infty} (x-1)^n$, which is 1.

(d) It is possible that the series $\sum_{n=1}^{\infty} a_n 3^n$ converges absolutely, but the series $\sum_{n=1}^{\infty} a_n (-2)^n$ diverges.

False: $|a_n(-2)^n| < |a_n3^n|$, so if $\sum_{n=1}^{\infty} a_n3^n$ converges absolutely then $\sum_{n=1}^{\infty} a_n2^n$ does too. See also the reasoning in part b).

(e) If the series $\sum_{n=1}^{\infty} a_n x^n$ has radius of convergence 1, then $\sum_{n=1}^{\infty} a_n/n^3$ converges. False: $a_n = n^3$ serves as a counterexample. The point to keep in mind here is that if a_n is ANY sub-exponential function $(n^5, 1/n, \ln n + n, \text{ etc.})$ then the series $\sum_{n=1}^{\infty} a_n x^n$ will have radius of convergence 1.