
Midterm 2, Spring 2014–Solutions

1. For each of the following series determine whether the series is divergent, conditionally convergent, or
absolutely convergent. Indicate which tests you used.

(a)
∞∑

n=1

(−1)n
1

(n2 + 1)1/3

The series is alternating, it has a limit of zero, and the terms are decreasing in magnitude, so by
the Alternating Series test it converges.

Since limn→∞
1

(n2+1)1/3
(n2/3) = 1 and

∑∞
n=1

1
n2/3 diverges by the p-test,

∑∞
n=1

1
(n2+1)1/3

diverges

by the Limit Comparison Test (note: a direct comparison to 1/n2/3 will not work since 1/(n2 +
1)1/3 is smaller).

The series is therefore convergent but not absolutely convergent, and so is conditionally convergent.

(b)
∞∑

n=1

sin(n)

√
n2 + n

n2 + 1

Since limn→∞

√
n2+n
n2+1 = 1 but limn→∞ sin(n) does not exist, limn→∞ sin(n)

√
n2+n
n2+1 does not exist.

The series therefore diverges by the Test For Divergence.

(c)
∞∑

n=6

sin(n2 + 2)

n(n− 5)

Since | sin(x)| ≤ 1 for all x ∈ R, it follows that | sin(n
2+2)

n(n−5) | ≤
1

n(n−5) .

Since limn→∞
1

n(n−5) (n
2) = 1,

∑∞
n=6

1
n(n−5) converges by the Limit Comparison Test. The series∑∞

n=6
sin(n2+2)
n(n−5) is therefore absolutely convergent.
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2. True/False. If true, explain why (concisely). If false, give a counterexample.

(a) If the series
∑∞

n=1 an converges absolutely, then
∑∞

n=1 sin(ln(n))an converges.

True. Since | sin(ln(n))an| ≤ |an| (| sin(x)| ≤ 1), the Convergence test implies that
∑∞

n=1 sin(ln(n))an
also converges absolutely.

(b) If {an} converges but {bn} diverges, then {anbn} diverges.

False: an = 0 is a (trivial) counterexample.

Note: all counterexamples here will at least require limn→∞ an = 0.

(c) If
∑∞

n=1 an converges absolutely and {bn} is bounded, then
∑∞

n=1 anbn converges.

True: If bn is bounded then there is some M such that |bn| < M for all n ∈ N. Then
∑∞

n=1 |anbn| ≤∑∞
n=1 M · |an| = M

∑∞
n=1 |an|, which converges. Therefore

∑∞
n=1 anbn converges absolutely.

Note: The condition that
∑∞

n=1 an converges absolutely is necessary here. Otherwise an =
(−1)n/n, bn = (−1)n could serve as a counterexample.

(d) If the series
∑∞

n=1 an converges then
∑∞

n=1 a
2
n converges.

False: an = (−1)n/
√
n serves as a counterexample.

Note: If it were also specified that an > 0 for all n ∈ N, then the statement would be true by
the Comparison Test: limn→∞ an = 0 since

∑∞
n=1 an converges, so there exists an M such that

an < 1 for all n > M , and therefore a2n < an for all n > M .
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3. Find the first three non-zero terms of the Taylor series about x = 0 for

f(x) = (1 + x) ln(1 + x2)

Taking derivatives here would be a pain, so use the fact that you have the expansion for ln(1 + x) on
your cheat sheet (hint, hint):

ln(1 + x) = x− x2/2 + x3/3− . . .

ln(1 + x2) = x2 − x4/2 + . . .

(1 + x) ln(1 + x2) = x2 + x3 − x4/2− x5/2 + . . .

We know that we can cut the expansion for ln(1 + x2) off at x2 − x4/2 because the next power will be
x6 but we only need the first three non-zero terms (i.e. x2, x3, x4) for the answer.
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4. Find the interval of convergence for the power series

∞∑
n=1

(−1)n
(2x− 1)n

n

Using the ratio test, we get

lim
n→∞

|an+1|
|an|

= lim
n→∞

n|2x− 1|n+1

(n + 1)|2x− 1|n

= lim
n→∞

n

n + 1
|2x− 1|

= |2x− 1|

Since the ratio test says that the series converges when |r| < 1, we know that the power series will
converge when

|2x− 1| < 1

−1 < 2x− 1 < 1

0 < 2x < 2

0 < x < 1

Then plugging in x = 0, we get
∑∞

n=1
1
n , which diverges. Plugging in x = 1 gives

∑∞
n=1

(−1)n
n , which

converges by the Alternating Series test. The interval of convergence is therefore (0, 1]. Check #1 to

confirm: when we plug in the numbers 0 and 1 for x, the exponential parts of the series become 1n and
(−1)n, respectively. This will always be the case at the borders of the interval. Check #2 to confirm:

The exponential part (ignoring the (−1)n) is (2x − 1)n = 2n(x − 1
2 )n, so the center of convergence

is 1/2 and the radius is also 1/2, giving an interval of (0, 1). Since the non-exponential part is 1
n we

expect exactly one of the two endpoints to converge.
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5. True or False: You do not have to show your work.

(a) If
∑∞

n=1 an(x− 1)n converges at x = 4 and diverges at x = −2, then it converges at x = −1.

True. The interval of convergence has center x = 1 and radius at least 3 (since it converges at
x = 4). −1 is within 3 of x = 1, and so the series converges at x = −1.

Note that since −2 is also distance 3 from x = 1, the interval of convergence must be (−2, 4]
precisely.

(b) If a series
∑∞

n=1 an3n converges, then
∑∞

n=1 an2n converges.

True. The Ratio Test combined with the fact that
∑∞

n=1 an3n converges implies that limn→∞ 3|an+1/|an| ≤
1. Applying the Ratio test to the second series then gives limn→∞ 2|an+1|/|an| < 1, which shows
that it converges.

Also: one could think of the series
∑∞

n=1 an3n as the power series anx
n (which has a center of 0)

converging at x = 3. The power series therefore has a radius of at least 3, and so converges at
x = 2.

(c) If the series
∑∞

n=1 an converges conditionally, then the radius of convergence of
∑∞

n=1 an(x− 1)n

is 1.

True, since for
∑∞

n=1 an to converge conditionally it must look something like 1/n, 1/ lnn, or
1/
√
n. None of these grow or decay as fast as any exponential function (since then

∑∞
n=1 an

would converge absolutely), and therefore these terms do not affect the radius of convergence.

This means that
∑∞

n=1 an(x− 1)n has the same radius of convergence as
∑∞

n=1(x− 1)n, which is
1.

(d) It is possible that the series
∑∞

n=1 an3n converges absolutely, but the series
∑∞

n=1 an(−2)n di-
verges.

False: |an(−2)n| < |an3n|, so if
∑∞

n=1 an3n converges absolutely then
∑∞

n=1 an2n does too.

See also the reasoning in part b).

(e) If the series
∑∞

n=1 anx
n has radius of convergence 1, then

∑∞
n=1 an/n

3 converges.

False: an = n3 serves as a counterexample. The point to keep in mind here is that if an is ANY
sub-exponential function (n5, 1/n, lnn + n, etc.) then the series

∑∞
n=1 anx

n will have radius of
convergence 1.
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