Midterm 2, Spring 2014—Solutions

1. For each of the following series determine whether the series is divergent, conditionally convergent, or
absolutely convergent. Indicate which tests you used.

(a)

= 1
;(_””7@2 7

The series is alternating, it has a limit of zero, and the terms are decreasing in magnitude, so by
the Alternating Series test it converges.

Since limy— o0 agpys (07/%) =1 and 3207 | 3 diverges by the p-test, 32,7, ogiyrs diverges

2/3

by the Limit Comparison Test (note: a direct comparison to 1/n%/3 will not work since 1/(n? +

1)'/3 is smaller).

The series is therefore convergent but not absolutely convergent, and so is conditionally convergent.

n2+n . . . . . n2+n . .
mort = Lbutlim, 0 sin(n) does not exist, lim,,_, o, sin(n) no+7 does not exist.

The series therefore diverges by the Test For Divergence.

Since lim,, _,

Since |sin(z)] < 1 for all z € R, it follows that |S’:((22_Jg)2)| < n(n1_5).

Since limy o0 55757 (%) = 1, 32076 75y converges by the Limit Comparison Test. The series

Zoo sin(n?+42)

n=6 n(n=5) is therefore absolutely convergent.



2. True/False. If true, explain why (concisely). If false, give a counterexample.

(a) If the series ) - | a, converges absolutely, then >~ | sin(In(n))a, converges.
True. Since | sin(In(n))a,| < |a,| (|sin(z)| < 1), the Convergence test implies that > sin(In(n))a,
also converges absolutely.

(b) If {a,} converges but {b,} diverges, then {a,b,} diverges.
False: a, = 0 is a (trivial) counterexample.
Note: all counterexamples here will at least require lim,, o, a,, = 0.

(¢) If 3°0° | a, converges absolutely and {b,} is bounded, then > | a,b, converges.
True: If b, is bounded then there is some M such that |b,| < M for all n € N. Then Y~ , |a,by|
S M -|an] = MY |ay|, which converges. Therefore > >~ | a,b, converges absolutely.

IN

Note: The condition that ZZO=1 a, converges absolutely is necessary here. Otherwise a, =
(=1)"/n,b, = (=1)™ could serve as a counterexample.

(d) If the series Y > | a, converges then Y > a2 converges.
False: a,, = (—1)"/y/n serves as a counterexample.

Note: If it were also specified that a, > 0 for all n € N, then the statement would be true by
the Comparison Test: lim,,_, o a, = 0 since Ezo:l a, converges, so there exists an M such that
a, < 1 for all n > M, and therefore a? < a,, for all n. > M.



3. Find the first three non-zero terms of the Taylor series about = = 0 for
f(z) = (1 +2)In(1 + 2?)

Taking derivatives here would be a pain, so use the fact that you have the expansion for In(1 + z) on
your cheat sheet (hint, hint):

n(14+z)=2—2%/2+23/3— ...
In(1+2%) =2% —2*/2+...
(1+2)In(1+2?) =2+ 2% —2?/2 —2%/2+ ...

We know that we can cut the expansion for In(1 4 2) off at 22 — 2*/2 because the next power will be
2% but we only need the first three non-zero terms (i.e. 22,23, z%) for the answer.



4. Find the interval of convergence for the power series

o0

20 —1)"
n=1 n
Using the ratio test, we get
. |an+1| . TL|2JU — 1|n+1

lim —— = —_
n—oo |ay| n—oo (n+ 1)]22 — 1|

= lim |2z — 1

= |2z — 1

Since the ratio test says that the series converges when |r| < 1, we know that the power series will
converge when

2z —1] <1

—1<2xr—1<1

0<2x<2
O<ae<l1

Then plugging in 2 = 0, we get > | 1, which diverges. Plugging in 2 = 1 gives >, (le)n, which
converges by the Alternating Series test. The interval of convergence is therefore (0, 1]. Check #1 to

confirm: when we plug in the numbers 0 and 1 for z, the exponential parts of the series become 1" and
(—=1)™, respectively. This will always be the case at the borders of the interval. Check #2 to confirm:

The exponential part (ignoring the (—1)") is (22 — 1)" = 2"(xz — )", so the center of convergence

is 1/2 and the radius is also 1/2, giving an interval of (0,1). Since the non-exponential part is = we
expect exactly one of the two endpoints to converge.



5. True or False: You do not have to show your work.

(a)

If 77 an(x — 1) converges at z = 4 and diverges at & = —2, then it converges at z = —1.
True. The interval of convergence has center = 1 and radius at least 3 (since it converges at
x =4). —1 is within 3 of z = 1, and so the series converges at z = —1.

Note that since —2 is also distance 3 from x = 1, the interval of convergence must be (—2,4]
precisely.

If a series ) > | a,3"™ converges, then > ° | a,2" converges.

True. The Ratio Test combined with the fact that Y | a,3" converges implies that lim,_,oo 3|ant1/]an| <
1. Applying the Ratio test to the second series then gives lim, oo 2|apt1|/|an| < 1, which shows

that it converges.

Also: one could think of the series > | a,,3" as the power series a,,z™ (which has a center of 0)
converging at x = 3. The power series therefore has a radius of at least 3, and so converges at

T =2.

If the series Y.~ ; a,, converges conditionally, then the radius of convergence of Y > | a,(z —1)"
is 1.

>° | an to converge conditionally it must look something like 1/n,1/Inn, or

True, since for » >~ ,

1/y/n. None of these grow or decay as fast as any exponential function (since then Y °  a,
would converge absolutely), and therefore these terms do not affect the radius of convergence.
This means that Y2 | a,,(z — 1)™ has the same radius of convergence as » -, (z — 1)", which is

1.

It is possible that the series Y~ | a,3" converges absolutely, but the series > 7 | a,(—2)" di-
verges.

False: |an(—2)"| < |a,3™], so if Y7 | a,3™ converges absolutely then Y, a,2" does too.

See also the reasoning in part b).

. o0 n . o0 3
If the series )~ ; apa™ has radius of convergence 1, then )"~ | a,/n’ converges.

False: a,, = n> serves as a counterexample. The point to keep in mind here is that if a, is ANY

sub-exponential function (n®,1/n,Inn + n, etc.) then the series Y - | a,z™ will have radius of
convergence 1.



