Midterm 2, Spring 2014-Solutions

1. For each of the following series determine whether the series is divergent, conditionally convergent, or absolutely convergent. Indicate which tests you used.
(a)

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\left(n^{2}+1\right)^{1 / 3}}
$$

The series is alternating, it has a limit of zero, and the terms are decreasing in magnitude, so by the Alternating Series test it converges.
Since $\lim _{n \rightarrow \infty} \frac{1}{\left(n^{2}+1\right)^{1 / 3}}\left(n^{2 / 3}\right)=1$ and $\sum_{n=1}^{\infty} \frac{1}{n^{2 / 3}}$ diverges by the p-test, $\sum_{n=1}^{\infty} \frac{1}{\left(n^{2}+1\right)^{1 / 3}}$ diverges by the Limit Comparison Test (note: a direct comparison to $1 / n^{2 / 3}$ will not work since $1 /\left(n^{2}+\right.$ $1)^{1 / 3}$ is smaller).
The series is therefore convergent but not absolutely convergent, and so is conditionally convergent.
(b)

$$
\sum_{n=1}^{\infty} \sin (n) \sqrt{\frac{n^{2}+n}{n^{2}+1}}
$$

Since $\lim _{n \rightarrow \infty} \sqrt{\frac{n^{2}+n}{n^{2}+1}}=1$ but $\lim _{n \rightarrow \infty} \sin (n)$ does not exist, $\lim _{n \rightarrow \infty} \sin (n) \sqrt{\frac{n^{2}+n}{n^{2}+1}}$ does not exist. The series therefore diverges by the Test For Divergence.
(c)

$$
\sum_{n=6}^{\infty} \frac{\sin \left(n^{2}+2\right)}{n(n-5)}
$$

Since $|\sin (x)| \leq 1$ for all $x \in \mathbb{R}$, it follows that $\left|\frac{\sin \left(n^{2}+2\right)}{n(n-5)}\right| \leq \frac{1}{n(n-5)}$.
Since $\lim _{n \rightarrow \infty} \frac{1}{n(n-5)}\left(n^{2}\right)=1, \sum_{n=6}^{\infty} \frac{1}{n(n-5)}$ converges by the Limit Comparison Test. The series $\sum_{n=6}^{\infty} \frac{\sin \left(n^{2}+2\right)}{n(n-5)}$ is therefore absolutely convergent.
2. True/False. If true, explain why (concisely). If false, give a counterexample.
(a) If the series $\sum_{n=1}^{\infty} a_{n}$ converges absolutely, then $\sum_{n=1}^{\infty} \sin (\ln (n)) a_{n}$ converges.

True. Since $\left|\sin (\ln (n)) a_{n}\right| \leq\left|a_{n}\right|(|\sin (x)| \leq 1)$, the Convergence test implies that $\sum_{n=1}^{\infty} \sin (\ln (n)) a_{n}$ also converges absolutely.
(b) If $\left\{a_{n}\right\}$ converges but $\left\{b_{n}\right\}$ diverges, then $\left\{a_{n} b_{n}\right\}$ diverges.

False: $a_{n}=0$ is a (trivial) counterexample.
Note: all counterexamples here will at least require $\lim _{n \rightarrow \infty} a_{n}=0$.
(c) If $\sum_{n=1}^{\infty} a_{n}$ converges absolutely and $\left\{b_{n}\right\}$ is bounded, then $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges. True: If b_{n} is bounded then there is some M such that $\left|b_{n}\right|<M$ for all $n \in \mathbb{N}$. Then $\sum_{n=1}^{\infty}\left|a_{n} b_{n}\right| \leq$ $\sum_{n=1}^{\infty} M \cdot\left|a_{n}\right|=M \sum_{n=1}^{\infty}\left|a_{n}\right|$, which converges. Therefore $\sum_{n=1}^{\infty} a_{n} b_{n}$ converges absolutely.
Note: The condition that $\sum_{n=1}^{\infty} a_{n}$ converges absolutely is necessary here. Otherwise $a_{n}=$ $(-1)^{n} / n, b_{n}=(-1)^{n}$ could serve as a counterexample.
(d) If the series $\sum_{n=1}^{\infty} a_{n}$ converges then $\sum_{n=1}^{\infty} a_{n}^{2}$ converges.

False: $a_{n}=(-1)^{n} / \sqrt{n}$ serves as a counterexample.
Note: If it were also specified that $a_{n}>0$ for all $n \in \mathbb{N}$, then the statement would be true by the Comparison Test: $\lim _{n \rightarrow \infty} a_{n}=0$ since $\sum_{n=1}^{\infty} a_{n}$ converges, so there exists an M such that $a_{n}<1$ for all $n>M$, and therefore $a_{n}^{2}<a_{n}$ for all $n>M$.
3. Find the first three non-zero terms of the Taylor series about $x=0$ for

$$
f(x)=(1+x) \ln \left(1+x^{2}\right)
$$

Taking derivatives here would be a pain, so use the fact that you have the expansion for $\ln (1+x)$ on your cheat sheet (hint, hint):

$$
\begin{aligned}
\ln (1+x) & =x-x^{2} / 2+x^{3} / 3-\ldots \\
\ln \left(1+x^{2}\right) & =x^{2}-x^{4} / 2+\ldots \\
(1+x) \ln \left(1+x^{2}\right) & =x^{2}+x^{3}-x^{4} / 2-x^{5} / 2+\ldots
\end{aligned}
$$

We know that we can cut the expansion for $\ln \left(1+x^{2}\right)$ off at $x^{2}-x^{4} / 2$ because the next power will be x^{6} but we only need the first three non-zero terms (i.e. x^{2}, x^{3}, x^{4}) for the answer.
4. Find the interval of convergence for the power series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{(2 x-1)^{n}}{n}
$$

Using the ratio test, we get

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|} & =\lim _{n \rightarrow \infty} \frac{n|2 x-1|^{n+1}}{(n+1)|2 x-1|^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{n}{n+1}|2 x-1| \\
& =|2 x-1|
\end{aligned}
$$

Since the ratio test says that the series converges when $|r|<1$, we know that the power series will converge when

$$
\begin{gathered}
|2 x-1|<1 \\
-1<2 x-1<1 \\
0<2 x<2 \\
0<x<1
\end{gathered}
$$

Then plugging in $x=0$, we get $\sum_{n=1}^{\infty} \frac{1}{n}$, which diverges. Plugging in $x=1$ gives $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$, which converges by the Alternating Series test. The interval of convergence is therefore $(0,1]$. Check $\# 1$ to
confirm: when we plug in the numbers 0 and 1 for x, the exponential parts of the series become 1^{n} and $(-1)^{n}$, respectively. This will always be the case at the borders of the interval. Check $\# 2$ to confirm:

The exponential part (ignoring the $\left.(-1)^{n}\right)$ is $(2 x-1)^{n}=2^{n}\left(x-\frac{1}{2}\right)^{n}$, so the center of convergence is $1 / 2$ and the radius is also $1 / 2$, giving an interval of $(0,1)$. Since the non-exponential part is $\frac{1}{n}$ we expect exactly one of the two endpoints to converge.
5. True or False: You do not have to show your work.
(a) If $\sum_{n=1}^{\infty} a_{n}(x-1)^{n}$ converges at $x=4$ and diverges at $x=-2$, then it converges at $x=-1$.

True. The interval of convergence has center $x=1$ and radius at least 3 (since it converges at $x=4) .-1$ is within 3 of $x=1$, and so the series converges at $x=-1$.
Note that since -2 is also distance 3 from $x=1$, the interval of convergence must be $(-2,4]$ precisely.
(b) If a series $\sum_{n=1}^{\infty} a_{n} 3^{n}$ converges, then $\sum_{n=1}^{\infty} a_{n} 2^{n}$ converges.

True. The Ratio Test combined with the fact that $\sum_{n=1}^{\infty} a_{n} 3^{n}$ converges implies that $\lim _{n \rightarrow \infty} 3\left|a_{n+1} /\left|a_{n}\right| \leq\right.$ 1. Applying the Ratio test to the second series then gives $\lim _{n \rightarrow \infty} 2\left|a_{n+1}\right| /\left|a_{n}\right|<1$, which shows that it converges.
Also: one could think of the series $\sum_{n=1}^{\infty} a_{n} 3^{n}$ as the power series $a_{n} x^{n}$ (which has a center of 0) converging at $x=3$. The power series therefore has a radius of at least 3 , and so converges at $x=2$.
(c) If the series $\sum_{n=1}^{\infty} a_{n}$ converges conditionally, then the radius of convergence of $\sum_{n=1}^{\infty} a_{n}(x-1)^{n}$ is 1 .
True, since for $\sum_{n=1}^{\infty} a_{n}$ to converge conditionally it must look something like $1 / n, 1 / \ln n$, or $1 / \sqrt{n}$. None of these grow or decay as fast as any exponential function (since then $\sum_{n=1}^{\infty} a_{n}$ would converge absolutely), and therefore these terms do not affect the radius of convergence. This means that $\sum_{n=1}^{\infty} a_{n}(x-1)^{n}$ has the same radius of convergence as $\sum_{n=1}^{\infty}(x-1)^{n}$, which is 1.
(d) It is possible that the series $\sum_{n=1}^{\infty} a_{n} 3^{n}$ converges absolutely, but the series $\sum_{n=1}^{\infty} a_{n}(-2)^{n}$ diverges.
False: $\left|a_{n}(-2)^{n}\right|<\left|a_{n} 3^{n}\right|$, so if $\sum_{n=1}^{\infty} a_{n} 3^{n}$ converges absolutely then $\sum_{n=1}^{\infty} a_{n} 2^{n}$ does too.
See also the reasoning in part b).
(e) If the series $\sum_{n=1}^{\infty} a_{n} x^{n}$ has radius of convergence 1 , then $\sum_{n=1}^{\infty} a_{n} / n^{3}$ converges.

False: $a_{n}=n^{3}$ serves as a counterexample. The point to keep in mind here is that if a_{n} is ANY sub-exponential function ($n^{5}, 1 / n, \ln n+n$, etc.) then the series $\sum_{n=1}^{\infty} a_{n} x^{n}$ will have radius of convergence 1.

