Math 1B, First Midterm Examination 9:00-10:00am, N.Reshetikhin, February 14, 2014
Student's Name:
TA's name:
Student's i.d. number:

$$
\begin{array}{lcccccc}
\text { Problem } & 1 & 2 & 3 & 4 & 5 & \text { Total } \\
\text { Points } & 20 & 20 & 20 & 20 & 20 & 100 \\
\text { Grade } & & & & & &
\end{array}
$$

1.(20 points)Evaluate the integral

$$
\int \frac{x^{2}+2 x+4}{(x+2)\left(x^{2}+1\right)} d x
$$

2.(20 points) Evaluate the integral

$$
\int x \sqrt{x^{2}-4 x+5} d x
$$

3.(20 points)

(a)Indicate which of the following statements are true and which are false. Do NOT show your work if the answer is TRUE. Give a counter-example if the answer is FALSE.

1. (6 points) If $f(x) \geq 1$ and $\int_{0}^{\infty} x f(x) d x$ is convergent, then $\int_{0}^{\infty} f(x) d x$ also converges.
2. (5 points) If $\int_{-1}^{2} f(x) d x$ converges, then $\int_{0}^{1} f(x) d x$ also converges.
(b)Indicate which of the following statements are true and which are false. You do NOT HAVE TO show your work.
3. (3 points) $\int_{1}^{\infty} \frac{x+2}{x^{1 / 2}(1-x)^{1 / 2}} d x$ converges
4. (3 points) $\int_{0}^{\infty} \frac{\sin (x)}{x^{3}} d x$ converges
5. (3 points) $\int_{0}^{\pi} \frac{\sin (x)-1}{x-\pi / 2} d x$ converges
4.(20 points) Evaluate the integral

$$
\int \sin (\sqrt{x}) d x
$$

5.(20 points) Let n be a number of intervals in the trapezoidal approximation. Find a value of n so that the midpoint approximation to the integral

$$
\int_{0}^{1} \cos \left(x^{2}+1\right) d x
$$

is accurate to within 10^{-4}. Do not compute this approximation.

