Midterm 1, Spring 2014-Solutions

1. Evaluate the integral

$$
\int \frac{x^{2}+2 x+4}{x+2} x^{2}+1 d x
$$

The rational function is proper, so we don't have to do long division and can instead go right to partial fractions:

$$
\begin{aligned}
\frac{x^{2}+2 x+4}{x+2} x^{2}+1 & =\frac{A}{x+2}+\frac{B x+C}{x^{2}+1} \\
x^{2}+2 x+4 & =A\left(x^{2}+1\right)+(B x+C)(x+2) \\
1 & =A+B \\
2 & =2 B+C \\
4 & =A+2 C
\end{aligned}
$$

Solving gives $A=4 / 5, B=1 / 5, C=8 / 5$. This leaves us with

$$
\begin{aligned}
\int \frac{A}{x+2}+\frac{B x+C}{x^{2}+1} & =A \ln (|x+2|)+\frac{B}{2} \ln \left(x^{2}+1\right)+C \arctan (x) \\
& =\frac{4}{5} \ln (|x+2|)+\frac{1}{10} \ln \left(x^{2}+1\right)+\frac{8}{5} \arctan (x)
\end{aligned}
$$

2. Evaluate the integral

$$
\int x \sqrt{x^{2}-4 x+5} d x
$$

First complete the square to get

$$
\int x \sqrt{x^{2}-4 x+5} d x=\int x \sqrt{(x-2)^{2}+1} d x
$$

This follows the $x=\tan \theta$ pattern, so substitute

$$
(x-2)=\tan \theta, d x=\sec \theta \tan \theta d \theta
$$

This turns the integral into

$$
\begin{aligned}
\int x \sqrt{(x-2)^{2}+1} d x & =\int(\tan \theta+2) \sqrt{\tan ^{2} \theta+1} \sec ^{2} \theta d \theta \\
& =\int \tan \theta \sec ^{3} \theta+2 \sec ^{3} \theta d \theta \\
& =\int \tan \theta \sec ^{3} \theta d \theta+2 \int \sec ^{3} \theta d \theta
\end{aligned}
$$

For the first integral, make the substitution $u=\sec \theta, d u=\sec \theta \tan \theta$ to get

$$
\begin{aligned}
\int \tan \theta \sec ^{3} \theta d \theta & =\int u^{2} d u \\
& =\frac{1}{3} u^{3} \\
& =\frac{1}{3} \sec ^{3} \theta \\
& =\frac{1}{3}\left(x^{2}-4 x+5\right)^{3 / 2}
\end{aligned}
$$

where the last bit comes from the fact that $\sqrt{x^{2}-4 x+5}$ became $\sec \theta$ in the original integral (alternately, combine $(x-2)=\tan \theta$ with $\sec ^{2} \theta=\tan ^{2} \theta+1$). As for the second integral, use integration by parts with $u=\sec \theta, d v=\sec ^{2} \theta d \theta$ to get

$$
\begin{aligned}
\int \sec ^{3} \theta d \theta & =\sec \theta \tan \theta-\int \tan \theta(\sec \theta \tan \theta) d \theta \\
& =\sec \theta \tan \theta-\int \sec \theta\left(\sec ^{2} \theta-1\right) d \theta \\
& =\sec \theta \tan \theta+\int \sec \theta d \theta-\int \sec ^{3} \theta d \theta \\
2 \int \sec ^{3} \theta d \theta & =\sec \theta \tan \theta+\ln |\sec \theta+\tan \theta| \\
& =(x-2) \sqrt{x^{2}-4 x+5}+\ln \mid(x-2)+\sqrt{x^{2}-4 x+5}
\end{aligned}
$$

Therefore, putting this all together, we arrive at

$$
\int x \sqrt{x^{2}-4 x+5} d x=\frac{1}{3}\left(x^{2}-4 x+5\right)^{3 / 2}+(x-2) \sqrt{x^{2}-4 x+5}+\ln \left|(x-2)+\sqrt{x^{2}-4 x+5}\right|
$$

(HT GSI Alexander Bertoloni-Meli on figuring out how to integrate $\sec ^{3} \theta$.)
3. (a) Indicate which of the following statements are true and which are false. Give a counterexample if false. DO NOT show your work if the statement is true.
i. If $f(x) \geq 1$ and $\int_{0}^{\infty} x f(x) d x$ converges, then $\int_{0}^{\infty} f(x) d x$ also converges.

This problem is broken, since if $f(x) \geq 1$ then $x f(x) \geq x$, and so $\int_{0}^{\infty} x f(x) d x \geq \int_{0}^{\infty} x d x$ cannot possibly converge. So instead assume the restriction $f(x) \geq 0$.
The statement is false. $f(x)=e^{-x} / x$ and $f(x)=\left\{\begin{array}{ll}1 / x & x<1 \\ 0 & x \geq 1\end{array}\right.$ both serve as counterexamples.
ii. If $\int_{-1}^{2} f(x) d x$ converges, then $\int_{0}^{1} f(x) d x$ also converges.

True. If an integral converges then the integral on every sub-interval of the original interval must also converge.
(b) Indicate which statements are true and which are false. You DO NOT HAVE TO show your work.
i. $\int_{1}^{\infty} \frac{x+2}{x^{1 / 2}(1-x)^{1 / 2}} d x$ converges.

This problem is also broken since $(1-x)^{1 / 2}=\sqrt{1-x}$ is not defined for $x>1$. So assume it's $(x-1)^{1 / 2}$ instead.
Comparing powers in the top and bottom gives $\frac{x}{x^{1 / 2} x^{1 / 2}} \sim 1$. The limit of the function is 1 as $x \rightarrow \infty$, and so the integral does not converge. FALSE.
ii. $\int_{0}^{\infty} \frac{\sin (x)}{x^{3}} d x$ converges.

FALSE. Don't let the ∞ fool you-it diverges because of what happens at 0 . Peeling off a $\sin (x) / x$ (which approaches 1 as $x \rightarrow 0$), we get $\frac{\sin (x)}{x^{3}} \sim \frac{1}{x^{2}}$ as x approaches zero. Therefore the function grows like $1 / x^{2}$ near zero, and so the integral diverges.
iii. $\int_{0}^{\pi} \frac{\sin (x)-1}{x-\pi / 2}$ converges.

True. The potential problem is at $x=\pi / 2$, but $\sin (\pi / 2)-1=0$. Using L'Hop's rule, we get

$$
\begin{aligned}
\lim _{x \rightarrow \pi / 2} \frac{\sin (x)-1}{x-\pi / 2} & =\lim _{x \rightarrow \pi / 2} \frac{\cos (x)}{1} \\
& =0
\end{aligned}
$$

So the function is not only bounded, it's limit is zero at $\pi / 2$! So the integral definitely converges.
4. Evaluate the integral

$$
\int \sin (\sqrt{x}) d x
$$

Substitute $y=\sqrt{x}, d y=1 / 2 \sqrt{x} d x=\frac{1}{2 y} d x, 2 y d y=d x$ to get

$$
\int \sin (\sqrt{x}) d x=2 \int y \sin y d y
$$

Then continue with integration by parts: $u=y, d v=\sin y$:

$$
\begin{aligned}
2 \int y \sin y d y & =2\left(-y \cos y-\int(-\cos y) d y\right) \\
& =-2 y \cos y+2 \sin y \\
& =-2 \sqrt{x} \cos \sqrt{x}+2 \sin \sqrt{x}
\end{aligned}
$$

5. Find the number of intervals n in the midpoint approximation so that the approximation of the integral

$$
\int_{0}^{1} \cos \left(x^{2}+1\right) d x
$$

is accurate to within 10^{-4}. DO NOT COMPUTE THE APPROXIMATION.
First take the second derivative:

$$
\begin{aligned}
f(x) & =\cos \left(x^{2}+1\right) \\
f^{\prime}(x) & =-2 x \sin \left(x^{2}+1\right) \\
f^{\prime \prime}(x) & =-2 \sin \left(x^{2}+1\right)-4 x^{2} \cos \left(x^{2}+1\right) \\
\left|f^{\prime \prime}(x)\right| & \leq\left|-2 \sin \left(x^{2}+1\right)-4 x^{2} \cos \left(x^{2}+1\right)\right| \\
& \leq 2\left|\sin \left(x^{2}+1\right)\right|+4 x^{2}\left|\cos \left(x^{2}+1\right)\right| \\
& \leq 2+4 x^{2} \\
& \leq 6
\end{aligned}
$$

with the final inequality holding since $x \in[0,1]$. So 6 is an acceptable value for K. The from the error formula, we want

$$
\begin{aligned}
\frac{K(b-a)^{3}}{24 n^{2}} & \leq 10^{-4} \\
\frac{10^{4} K}{24} & \leq n^{2} \\
100 \sqrt{K / 24} & \leq n \\
100 \sqrt{6 / 24} & \leq n \\
100 / 2 & \leq n \\
50 & \leq n
\end{aligned}
$$

So $n \geq 50$ intervals will guarantee that the error in our approximation is at most 10^{-4}.

