
Section 7.7 Deriving the Trapezoidal Rule Error

The error bounds for numerical integration are presented without proof. While it is
perhaps unreasonable to prove all of them in an introductory text, one should at least
prove the bound for the Trapezoidal Rule since it is a nice application of integration by
parts. (The Midpoint Rule is, too — see exercises at the end.) We do that here.

Suppose we want to estimate
∫ b

a
f(x) dx using the Trapezoidal Rule with n intervals.

As usual, let h = b−a
n and xi = a + ih. We look at a single interval and integrate by parts

twice:

∫ xi+1

xi

f(x) dx =

∫ h

0

f(t + xi) dt =

[

(t + A)f(t + xi)

]h

0

−

∫ h

0

(t + A)f ′(t + xi) dt

=

[

(t + A)f(t + xi)

]h

0

−

[(

(t + A)2

2
+ B

)

f ′(t + xi)

]h

0

+

∫ h

0

(

(t + A)2

2
+ B

)

f ′′(t + xi) dt,

where we can choose the constants of integration A and B any way we choose. We want to

choose A so that
[

(t + A)f(t + xi)
]h

0
is the trapezoid area and B so that our error bound

will be small.

For A, we want (h+A)f(h+xi)−Af(xi) = (f(xi)+f(xi+1))h/2. Since h+xi = xi+1,
you should be able the verify that A = −h/2 works.

One way we could try make our error bound small is by making

[(

(t + A)2

2
+ B

)

f ′(t + xi)

]h

0

equal to zero — if we can. What this will do is push all the error into one place, namely
the integral containing f ′′. Having it all in one place help us get a better bound. Recalling
that A = −h/2, we have

[(

(t + A)2

2
+ B

)

f ′(t + xi)

]h

0

=

(

(h/2)2

2
+ B

)

f ′(h + xi) −

(

(−h/2)2

2
+ B

)

f ′(xi).

Thus we take B = −h2/8 to get zero.

So far we have proved

∫ xi+1

xi

f(x) dx =
h(f(xi) + f(xi+1))

2
+

∫ h

0

(

(t − h/2)2

2
−

h2

8

)

f ′′(t + xi) dt

Call the difference between the integral and the trapezoid ET (i). The error in the Trape-
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zoidal Rule equals the sum of these:

ET = ET (0) + ET (1) + · · · + ET (n − 1)

=

∫ h

0

(

(t − h/2)2

2
− h2/8

)

f ′′(t + x0) dt

+ · · ·+
∫ h

0

(

(t − h/2)2

2
− h2/8

)

f ′′(t + xn−1) dt

=

∫ h

0

(

(t − h/2)2

2
− h2/8

)

(

f ′′(t + x0) + · · · + f ′′(t + xn−1)
)

dt.

As in the text, we suppose that |f ′′(x)| ≤ K for a ≤ x ≤ b. Thus

|ET | =

∣

∣

∣

∣

∫ h

0

(

(t − h/2)2

2
−

h2

8

)

(

f ′′(t + x0) + · · · + f ′′(t + xn−1)
)

dt

∣

∣

∣

∣

≤

∫ h

0

∣

∣

∣

∣

(

(t − h/2)2

2
−

h2

8

)

(

f ′′(t + x0) + · · · + f ′′(t + xn−1)
)

∣

∣

∣

∣

dt

=

∫ h

0

∣

∣

∣

∣

(t − h/2)2

2
−

h2

8

∣

∣

∣

∣

∣

∣

∣
f ′′(t + x0) + · · · + f ′′(t + xn−1)

∣

∣

∣
dt

=

∫ h

0

∣

∣

∣

∣

(t − h/2)2

2
−

h2

8

∣

∣

∣

∣

(

|f ′′(t + x0)| + · · · + |f ′′(t + xn−1)|
)

dt

≤ nK

∫ h

0

∣

∣

∣

∣

(t − h/2)2

2
−

h2

8

∣

∣

∣

∣

dt.

The function (t−h/2)2

2 − h2

8 is a parabola opening upward that is zero at t = 0 and t = h/2.
Thus it is negative for 0 < t < h/2. Using that fact, we have

∫ h

0

∣

∣

∣

∣

(t − h/2)2

2
−

h2

8

∣

∣

∣

∣

dt ≤

∫ h

0

(

h2

8
−

(t − h/2)2

2

)

dt =

[

h2t

8
−

(t − h/2)3

6

]h

0

=

(

h3

8
−

(h/2)3

6
+

(−h/2)3

6

)

=
h3

12
.

Putting this all together and using h = b−a
n gives us the error bound in the text:

|ET | ≤
nKh3

12
=

K(b − a)3

12n2
.

Our derivation of the error bound lets us see some weaknesses in it. First, the value
of f ′′(x) can vary from interval to interval. In bounding |f ′′(t+xi)| all we need is a bound
for |f ′′(x)| for xi < x < xi+1, which may be much smaller than the bound for f ′′(x) for
a < x < b. Second, lets look at what is happening before all the absolute values. We added
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up the various f ′′(t + xi). Since some of these may be negative and some may be positive,
there can be cancellation among these terms and so the sum will be much less. What we

have is some sort of average of f ′′(x) multiplied by −(b−a)2

12n2 . Exactly how the average is
computed changes as we change n, but it won’t change very much from one large value

of n to another. Calling this average M , we see that ET ≈ −M(b−a)2

12n2 . As discussed in
another supplement to this section of the text, we can use this fact to estimate the error
in numerical integration.

Exercises Deriving the Midpoint Rule Error

The derivation of the Midpoint Rule error is similar to that for the Trapezoidal Rule, but
each interval has to be broken into two pieces.

1. Using integration by parts twice in each case, derive the identities

∫ h/2

0

g(t) dt =
hg(h/2)

2
−

h2g′(h/2)

8
+

∫ h/2

0

t2g′′(t)

2
dt

∫ h

h/2

g(t) dt =
hg(h/2)

2
+

h2g′(h/2)

8
+

∫ h

h/2

(t − h)2g′′(t)

2
dt.

2. Let EM be the Midpoint Rule error. Add the results of the previous exercise, replace
g(t) with f(t + xi). Next, by using the ideas in this supplement, derive the following
formula, filling in the question marks with the appropriate expressions.

EM =

∫ h/2

0

t2

2

(

?????
)

dt +

∫ h

h/2

???

2

(

?????
)

dt.

3. Conclude that

|EM | ≤ nK

∫ h/2

0

t2

2
dt + nK

∫ h

h/2

???

2
dt,

filling the question marks with appropriate expressions. Use this to derive the bound
for |EM | given in the text.
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