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Abstract. An iterative method, LSMB, is given for solving minx \| Ax - b\| 2. LSMB is based on
the Golub--Kahan bidiagonalization process and is constructed so that an objective function closely
related to the backward error for the least-squares problem is minimized with every iteration. We find
that at every step the iterate xk produced by LSMB is a convex combination of those produced by
LSQR (which minimizes \| rk\| 2 = \| b - Axk\| 2 over a Krylov subspace) and LSMR (which minimizes
\| AT rk\| 2 over the same subspace). Experiments on test cases from the University of Florida Sparse
Matrix Collection show that in practice LSMB performs at least as well as both LSQR and LSMR,
although never by more than a small margin. This suggests that LSMB could replace both solvers
when stopping rules are based on the backward error.
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1. Introduction. We present an algorithm called LSMB that, given a matrix
A \in \BbbR m\times n, a vector b \in \BbbR m, and possibly a scalar \lambda , solves the least-squares problems

min
x

\| Ax - b\| or min
x

\bigm\| \bigm\| \bigm\| \bigm\| \biggl( A
\lambda I

\biggr) 
x - 

\biggl( 
b
0

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| .
Least-squares problems have a wide variety of applications in scientific disciplines,

including statistics, signal processing, computer graphics, and systems control; see [1]
and [7] for some general background. We assume that we can compute matrix-vector
products of the form Av and ATu for any vectors u and v, but otherwise do not need
access to the entries of A. Thus our algorithm is suitable for cases where A is sparse
or a fast linear operator.

LSMB is an iterative algorithm closely related to LSQR [20] and to the more
recent LSMR [4] in that all three are based on the Golub--Kahan bidiagonalization of
A [6]. At the kth iteration, LSQR finds an approximate solution xk that minimizes
the residual norm \| rk\| = \| b - Axk\| over a Krylov subspace, while LSMR minimizes
\| AT rk\| over the same subspace. In exact arithmetic LSQR and LSMR are equivalent
to running the conjugate-gradient method [14] and MINRES [19], respectively, on the
normal equations ATAx = AT b or (ATA+ \lambda 2I)x = AT b.

Both LSQR and LSMR offer cheaply computable upper bounds for the backward
error : the norm of the smallest perturbation to A (and possibly also b) such that
xk is an exact solution to the perturbed system. As the backward error is typically
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1296 ERIC HALLMAN AND MING GU

used to determine when an iterative algorithm may be safely terminated, it is in our
best interest to find inexpensive estimates of the backward error that are as accurate
as possible. Recent work [15] has found an estimate of the backward error (\nu 0(xk))
for LSQR that can be measured in O(k) time and storage and is provably smaller
than the existing estimates based on \| rk\| and \| AT rk\| , thus allowing the iterative
algorithm to be terminated sooner.

LSMB is designed to minimize this new backward error estimate at every iteration.
In this way it is similar in spirit to the algorithms GMBACK and MINPERT [17,
18], which are variants of GMRES [22] that minimize the backward error for the
unsymmetric system Ax = b, and to CGBACK [10], a variant of the conjugate-
gradient method that minimizes the energy backward error for the symmetric positive
definite system Ax = b. We present LSMB as an extension of algorithms LSQR and
LSMR and show that all three can be run simultaneously for a minimal O(1) cost
beyond that already required by LSMR. In practice we find that the error for LSMB
is always less than the minimum of the two estimates provided by LSQR and LSMR,
but it turns out that this difference is never greater than a factor of

\surd 
2. This suggests

that LSMB will perform about as well as (or marginally better than) running LSQR
and LSMR simultaneously.

We also show how to tighten the backward error estimate for LSMB when solving
regularized least-squares problems or when the smallest singular value of A is known.
These same techniques can be used to find tighter estimates of \| PArk\| (the norm of
the projection of the residual onto the span of A) for LSQR. As a result, LSMB will
still not substantially outperform both LSQR and LSMR, but the improved estimate
of \| PArk\| sometimes allows LSQR to terminate sooner than LSMR on inconsistent
problems, particularly low-residual problems.

1.1. Overview. Section 2 reviews the Golub--Kahan bidiagonalization process
and introduces a new derivation of LSMR that allows us to run LSQR and LSMR
simultaneously at slightly lower cost. Section 3 reviews the backward error and a
variety of methods for estimating it. Section 4 derives the main part of LSMB and
shows that it will always lie on the line segment between LSQR and LSMR. Section 5
covers backward error estimates and shows how to pick an appropriate point on the
line segment. Section 6 shows the results of experiments on a range of overdetermined
problems. Section 7 offers our concluding remarks.

1.2. Notation. We denote matrices by capital Roman letters A, B, . . . , vectors
by lowercase Roman letters u, v, . . . , and scalars by lowercase Greek letters \alpha , \beta , . . . .
Givens rotations are an exception, in which case c and s represent the components
of the rotation. The notation \| v\| always means the 2-norm of the vector v, and \| A\| 
always means the Frobenius norm of the matrix A. The vector ek is the kth standard
basis vector of \BbbR n. The minimum-norm solution to the least-squares problem is
denoted by x\ast , and r\ast = b - Ax\ast is the optimal residual.

Underlined scalars (\rho , \theta ) arise in the process of QR factorizations and will change

into related elements (\rho , \theta ) as the factorization progresses. Superscripts (Q, \widehat R) distin-

guish the QR factorizations used in our algorithm as well as scalars (\^\theta , \~\rho ) associated
with these QR factorizations. The values \nu d and \nu d are exceptions that denote upper
and lower bounds on the backward error estimate \nu . Another exception is the scalar
\phi k+1, a legacy from the original LSQR paper [20] and an element that will change
into \phi k+1 in the next iteration.

The pseudoinverse and 2-norm condition number of A are denoted by A\dagger and
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LSMB: MINIMIZING LEAST-SQUARES BACKWARD ERROR 1297

cond(A), respectively. The notation A \succeq B means that the matrix A - B is positive
semidefinite.

2. The Golub--Kahan process, LSQR, and LSMR. We start with a short
summary of the Golub--Kahan bidiagonalization process [6], an iterative method orig-
inally designed to estimate the singular values of a matrix A by reducing it to a lower
bidiagonal matrix B. We use this process to reproduce the derivation of LSQR from
[20] and to provide a new derivation of LSMR. This new derivation will allow us to
run LSQR and LSMR simultaneously for the same cost as running LSMR alone.

2.1. Golub--Kahan bidiagonalization. The Golub--Kahan process takes a
matrixA and vector b and after k steps produces orthogonal matrices Uk = (u1, . . . , uk)
and Vk = (v1, . . . , vk) such that

Span(Uk) = Span
\bigl\{ 
b, (AAT )b, . . . , (AAT )k - 1b

\bigr\} 
= \scrK k(AAT , b),

Span(Vk) = Span
\bigl\{ 
AT b, (ATA)AT b, . . . , (ATA)k - 1AT b

\bigr\} 
= \scrK k(A

TA,AT b).

The process itself proceeds as follows:
1. Set \beta 1u1 = b (i.e., \beta 1 = \| b\| , u1 = b/\beta 1) and \alpha 1v1 = ATu1.
2. For k = 1, 2, . . . compute \beta k+1uk+1 = Avk - \alpha kuk and \alpha k+1vk+1 = ATuk+1 - 

\beta k+1vk.
If we additionally define

(2.1) Lk =

\left(     
\alpha 1

\beta 2 \alpha 2

. . .
. . .

\beta k \alpha k

\right)     , Bk =

\biggl( 
Lk

\beta k+1e
T
k

\biggr) 
,

we can characterize the process at each iteration by the two relations

(2.2) AVk = Uk+1Bk and ATUk+1 = Vk+1L
T
k+1.

Although the matrices Uk and Vk are orthogonal in exact arithmetic, they will quickly
lose their orthogonality in practice unless additional steps are taken to reorthogonalize
the vectors uk and vk. Some strategies for reorthogonalization are explored in [4]; we
do not cover the topic further here, but note that even when Uk and Vk are not exactly
orthogonal, all of our error estimates appear to be quite accurate in practice.

In the event that \alpha k = 0 or \beta k = 0, both LSQR and LSMR terminate and yield
the least-squares solution x\ast . The case \beta k = 0 additionally implies that Ax\ast = b (see
[4, sects. 3.6 and 4] for details).

2.2. Subproblems for LSQR and LSMR. At every iteration, LSQR and
LSMR minimize their respective objective functions over the space \scrK k(A

TA,AT b) =
Span(Vk), and so their iterates may be written as xk = Vkyk for some yk \in \BbbR k.
To distinguish the two algorithms, we denote the iterates for LSQR and LSMR by
xC
k (and yCk , r

C
k , etc.) and xM

k , respectively. The superscripts stand for ``conjugate
gradient"" and ``MINRES,"" following the notation of [19] and others.

Since LSQR was designed to solve the least-squares problem minx \| b - Ax\| , the
iterate was chosen to minimize the residual norm \| rk\| at every step. The first relation
in (2.2) implies that

(2.3) rk = b - Axk = b - AVkyk = \beta 1u1  - Uk+1Bkyk = Uk+1 (\beta 1e1  - Bkyk) ,
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1298 ERIC HALLMAN AND MING GU

and because Uk is orthogonal (in exact arithmetic) it follows that

(2.4) min
xk

\| rk\| = min
yk

\| \beta 1e1  - Bkyk\| .

Since Bk is lower bidiagonal, we can solve this subproblem efficiently by finding its
QR factorization.

Any solution to the least-squares problem also satisfies the relation AT r\ast = 0, so
LSMR was designed to minimize \| AT rk\| at every iteration. This objective function
has the advantage of converging to zero for both consistent and inconsistent systems,
which is useful when we are considering stopping criteria.

The second relation in (2.2) then implies that

(2.5) AT rk = ATUk+1(\beta 1e1  - Bkyk) = Vk+1L
T
k+1(\beta 1e1  - Bkyk),

and so we can derive the algorithm for LSMR by solving the subproblem

(2.6) min
xk

\| AT rk\| = min
yk

\bigm\| \bigm\| LT
k+1(\beta 1e1  - Bkyk)

\bigm\| \bigm\| .
This subproblem can be solved efficiently using a second QR factorization.

We note that the formulation for LSMR that we derive in (2.6) is slightly different
from the one originally derived in [4], which follows from the relation between Bk and
Lk+1 in (2.1):

(2.7) min
xk

\| AT rk\| = min
yk

\bigm\| \bigm\| \bigm\| \bigm\| \alpha 1\beta 1e1  - 
\biggl( 

BT
k Bk

\alpha k+1\beta k+1e
T
k

\biggr) 
yk

\bigm\| \bigm\| \bigm\| \bigm\| .
Subproblem (2.7) can be solved using the same two QR factorizations as before and
will be used in section 5.3 to estimate the norm of the LSMB iterates. The primary
difference is that solving (2.7) leads to a recursive formula for the iterates of LSMR,
while our solution to (2.6) expresses the iterates for LSMR in the form of the iterates
for LSQR plus a correction term, taking advantage of a relationship analogous to that
between CG and MINRES [19, sect. 7]. This allows us to run LSQR and LSMR (as
well as LSMB) simultaneously for roughly the same cost as running LSMR alone.

2.3. QR factorizations. Because Bk and Lk+1 are closely related bidiagonal
matrices, we can solve subproblems (2.4) and (2.6) efficiently by performing a pair of
QR factorizations and solving the resulting upper triangular systems.

These two factorizations can be expressed as the products

Qk+1 = Pk . . . P2P1,

Qk+1 = P k . . . P 2P 1,

where Pi and P i are Givens rotations operating on rows i and i+1 of a given matrix
and having significant components

\bigl( ck sk
 - sk ck

\bigr) 
and

\bigl( 
ck sk
 - sk ck

\bigr) 
, respectively. As derived

in [20], the first QR factorization takes the form

(2.8) Qk+1

\Bigl( 
Bk \beta 1e1

\Bigr) 
=

\Biggl( 
Rk fk

0 \phi k+1

\Biggr) 
=

\left(         

\rho 1 \theta 2 \phi 1

\rho 2
. . . \phi 2

. . . \theta k
...

\rho k \phi k

\phi k+1

\right)         
.
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LSMB: MINIMIZING LEAST-SQUARES BACKWARD ERROR 1299

The components of Rk and fk can be computed by the recurrence relation\biggl( 
ck sk
 - sk ck

\biggr) \biggl( 
\rho 
k

0 \phi k

\beta k+1 \alpha k+1 0

\biggr) 
=

\biggl( 
\rho k \theta k+1 \phi k

0 \rho 
k+1

\phi k+1

\biggr) 
,

with \rho 
1
= \alpha 1 and \phi 1 = \beta 1. We also use the notation

(2.9) Qk+1Lk+1 = Rk+1 =

\biggl( 
Rk \theta k+1ek
0 \rho 

k+1

\biggr) 
,

so that Rk+1 is identical to Rk+1 except for the final element.
As derived in [4], the second QR factorization takes the form

(2.10) Qk+1R
T
k+1 = Rk+1 =

\biggl( 
Rk

\widehat \theta k+1ek
0 \widehat \rho k+1

\biggr) 
=

\left(        

\rho 1 \theta 2

\rho 2
. . .

. . . \theta k
\rho k

\widehat \theta k+1\widehat \rho k+1

\right)        .

The matrix Rk can be computed by the recurrence relation

\biggl( 
ck sk
 - sk ck

\biggr) \biggl( 
\rho 
k

0 0

\theta k+1 \rho k+1 \rho 
k+1

\biggr) 
=

\Biggl( 
\rho k \theta k+1

\widehat \theta k+1

0 \rho 
k+1

\widehat \rho k+1

\Biggr) 

with \rho 
1
= \rho 1.

2.4. Solutions for LSQR and LSMR. For LSQR, [20] uses the first QR fac-
torization (2.8) and subproblem (2.4) to arrive at the problem

(2.11) min
xk

\| rk\| = min
yk

\| \beta 1e1  - Bkyk\| = min
yk

\bigm\| \bigm\| \bigm\| \bigm\| \biggl( fk
\phi k+1

\biggr) 
 - 
\biggl( 
Rkyk
0

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| .
The solution satisfies Rky

C
k = fk, which makes most of the entries on the right-hand

side zero. It gives the residual norm \| rCk \| =
\bigm| \bigm| \phi k+1

\bigm| \bigm| , although yCk and rCk are not
computed explicitly.

For LSMR, we additionally use the second QR factorization (2.10) and subprob-
lem (2.6) to arrive at the problem

min
xk

\| AT rk\| = min
yk

\bigm\| \bigm\| \bigm\| \bigm\| \biggl( Rk
\widehat \theta k+1ek

0 \widehat \rho k+1

\biggr) \biggl( 
fk  - Rkyk

\phi k+1

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| (2.12)

= min
yk

\bigm\| \bigm\| \bigm\| \bigm\| \biggl( Rk(fk  - Rkyk) + \phi k+1
\widehat \theta k+1ek\widehat \rho k+1\phi k+1

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| .(2.13)

The solution satisfies RkRky
M
k = Rkfk +\phi k+1

\widehat \theta k+1ek, which again makes most of the

entries in the final expression zero. In this case \| AT rMk \| = \widehat \rho k+1| \phi k+1| , although yMk ,
rMk , and AT rMk are still not computed explicitly.

D
ow

nl
oa

de
d 

08
/1

4/
19

 to
 1

52
.7

.2
55

.1
94

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1300 ERIC HALLMAN AND MING GU

2.5. Recurrence for \bfitx \bfitC 
\bfitk and \bfitx \bfitM 

\bfitk . If we solve RT
k W

T
k = V T

k and R
T

kW
T

k = Wk

by forward substitution, we get the relations

xC
k = Vky

C
k = VkR

 - 1
k fk = Wkfk = xC

k - 1 + \phi kwk,(2.14)

xM
k = Vky

M
k = VkR

 - 1
k fk + \phi k+1

\widehat \theta k+1VkR
 - 1
k R

 - 1

k ek = xC
k + \phi k+1

\widehat \theta k+1wk.(2.15)

The vectors wk and wk can be computed by the recurrences

\theta k+1wk + \rho k+1wk+1 = vk+1,

\theta kwk - 1 + \rho kwk = wk,

but as mentioned in [4] we can make the algorithm more efficient if we define hk =
\rho kwk and hk = \rho k\rho kwk and compute hk, hk rather than wk, wk at each step. We can
therefore solve for xC

k and xM
k efficiently by defining xC

0 = 0, h1 = v1, h0 = 0 and at
every iteration computing

hk = hk  - 
\biggl( 

\theta k\rho k
\rho k - 1\rho k - 1

\biggr) 
hk - 1,

xC
k = xC

k - 1 + (\phi k/\rho k)hk,

hk+1 = vk+1  - (\theta k+1/\rho k)hk.

Upon termination of the algorithm, we can compute xM
k as

xM
k = xC

k + \phi k+1
\widehat \theta k+1

\biggl( 
1

\rho k\rho k

\biggr) 
hk.

Notably, none of the estimates used as stopping criteria in LSMR requires explicit
computation of xM

k or rMk , so although we could compute xM
k at every step k it is

not necessary to do so. This opens up an interesting possibility: rather than choosing
ahead of time whether to use LSQR or LSMR for a problem, we can run LSQR while
keeping track of the error estimates for both methods, then transfer to LSMR at any
point.

2.6. Complexity. Both LSQR and LSMR require the computation of ATu and
Av at each iteration. If A is dense, then this will be the dominant cost, but if
A is sparse, then the extra vector operations may be an important consideration
in the run time of these algorithms. The QR factorizations can be computed with
minimal flops and memory, but computing the rest of the bidiagonalization process
and the recurrences costs a further 3m+5n and 3m+6n flops for LSQR and LSMR,
respectively.

While the original derivation for LSMR provided a recursive formula for xM
k , our

derivation interprets xM
k as being equal to xC

k plus a correction term that changes with
every iteration. This gives us a modest improvement in efficiency: while previously
running LSQR and LSMR simultaneously would cost an extra 3m + 7n flops per
iteration, we have reduced the cost to 3m+6n, the same cost as running LSMR alone.
We later show how to extend the algorithm to include LSMB at O(1) extra cost.

3. Motivation for LSMB. LSQR and LSMR offer stopping rules that can be
checked cheaply [20, 4]. For dimensionless quantities \tau , \epsilon , and \kappa , the rules are as
follows:

1. Stop if \| rk\| 
\| A\| \| xk\| +\tau \| b\| < \epsilon .
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2. Stop if \| AT rk\| 
\| A\| \| rk\| < \epsilon .

3. Stop if cond(A) > \kappa .
The first stopping rule is triggered earlier in LSQR than in LSMR since \| rCk \| \leq \| rMk \| 
(by design) and \| xC

k \| \geq \| xM
k \| (we prove this later). The second stopping rule is

triggered earlier in LSMR than in LSQR since \| AT rMk \| \leq \| AT rCk \| and \| rMk \| \geq 
\| rCk \| . The third stopping rule has a function similar to adding a regularization term,
preventing \| xk\| from growing too large when A is ill-conditioned. The quantities \| A\| 
and cond(A) can be estimated by \| Bk\| and cond(Bk) [4, sect. 3.4].

The first two stopping rules are both estimates of the backward error : the smallest
possible perturbation to the input data A and b such that xk is an exact solution for
the perturbed system.

Definition 3.1. Given a matrix A, arbitrary vectors x and b, and flexible pa-
rameter \tau \geq 0, the backward error for the least-squares problem minx \| Ax  - b\| is
defined as

\mu (x, \tau ) = min
E,f

\| E, \tau f\| : (A+ E)T [(A+ E)x - (b+ f)] = 0.

Note that x must solve the perturbed problem minx \| (A+ E)x - (b+ f)\| .
In most applications there is typically some uncertainty in the input data A

and b. If we run an iterative algorithm until the backward error is smaller than
this level of uncertainty, then the implication is that we can safely stop because our
current solution is as accurate as any we can realistically hope to achieve. Above this
threshold, a smaller backward error should in general imply a higher quality solution.

The first two stopping rules for LSQR and LSMR are both upper bounds for
\mu (x, \tau ). Although these rules are cheap to evaluate, they can be unnecessarily conser-
vative, and so in certain situations LSQR and LSMR may run longer than necessary.
For LSMB we attempt to minimize a more recent and tighter estimate of the backward
error, leading to a new stopping rule that lets us terminate the algorithm sooner. In
the next section we give a brief history of proposed estimates of \mu (x, \tau ).

3.1. Estimates of \bfitmu (\bfitx , \bfittau ). In 1995, Wald\'en, Karlson, and Sun [26] showed
that

\mu (x, \tau ) = min
\bigl\{ 
\omega , \sigma \mathrm{m}\mathrm{i}\mathrm{n}

\bigl[ 
A, \omega (I  - rr\dagger )

\bigr] \bigr\} 
,

where x is arbitrary, r = b - Ax, r\dagger = rT /\| r\| 2, and \omega is defined in [21] as

\omega = min
E,f

\| E, \tau f\| : (A+ E)x = b+ f(3.1)

=
\tau \| r\| \sqrt{} 

1 + \tau 2\| x\| 2
.(3.2)

Since it involves computing the smallest singular value of an m \times (m + n) matrix,
this formula is far too expensive to use as a stopping rule for iterative algorithms, but
several estimates have been well studied.

\bullet In 1975, Stewart [23] gave two backward perturbations,

(3.3) E0 =
rxT

\| x\| 2
, \| E0\| =

\| r\| 
\| x\| 

, E1 =
(PAr)x

T

\| x\| 2
, \| E1\| =

\| PAr\| 
\| x\| 

,

where PAr = AA\dagger r is the projection of r onto the column span of A. The per-
turbation E0 is the optimal backward perturbation for the consistent problem
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1302 ERIC HALLMAN AND MING GU

Ax = b with f = 0, and LSQR performs well with respect to both \| E0\| and
\| E1\| because it minimizes the norm of both the residual and its projection
at every step.

\bullet In 1977, Stewart [24] gave the additional backward perturbation

E2 =  - rrTA

\| r\| 2
, \| E2\| =

\| AT r\| 
\| r\| 

.

LSMR, minimizing \| AT r\| at every step, performs well with respect to \| E2\| .
\bullet In 1997, Karlson and Wald\'en [16] proposed the estimate

\nu (x, \tau ) = \omega \| (ATA+ \omega 2I) - 1/2AT r\| /\| r\| =
\omega 

\| r\| 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\biggl[ 
A
\omega I

\biggr] \biggl[ 
A
\omega I

\biggr] \dagger \biggl[ 
r
0

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| ,
where \omega is defined in (3.1)--(3.2). Various authors [13, 11, 12, 25] have pro-
vided bounds on the accuracy of this estimate, the tightest of which were
given in 2012 by Gratton, Jir\'anek, and Titley-Peloquin [8]; they showed that
if r\ast is the smallest attainable residual for the least-squares problem, then
the bounds

1 \leq \mu (x, \tau )

\nu (x, \tau )
\leq 

\sqrt{} 
2 - \| r\ast \| 2

\| r\| 2
\leq 

\surd 
2

hold for all x and \tau . Thus \nu (x, \tau ) is always a good estimate of \mu (x, \tau ), and
the estimate becomes increasingly accurate as x converges to x\ast .

\bullet The estimate \nu (x, \tau ) is unfortunately still too expensive to use directly as a
stopping rule, but in 2010, Jir\'anek and Titley-Peloquin [15] proposed upper
and lower bounds that were cheaper to compute. For a vector xk = Vkyk and
flexible parameter d, define tk = \beta 1e1  - Bkyk and

\mu d(xk, \tau ) = min
\Bigl\{ 
\omega , \sigma \mathrm{m}\mathrm{i}\mathrm{n}

\Bigl[ 
Lk+d+1, \omega (I  - tkt

\dagger 
k)
\Bigr] \Bigr\} 

,

\mu 
d
(xk, \tau ) = min

\Bigl\{ 
\omega , \sigma \mathrm{m}\mathrm{i}\mathrm{n}

\Bigl[ 
Bk+d, \omega (I  - tkt

\dagger 
k)
\Bigr] \Bigr\} 

.

The authors showed that the bounds

\mu 
d
(xk, \tau ) \leq \mu (xk, \tau ) \leq \mu d(xk, \tau )

hold for all d \geq 0 in exact arithmetic, becoming progressively tighter as d
increases, and recommended estimating the backward error with the corre-
sponding approximations

\nu d(xk, \tau ) =
\omega 

\| rk\| 

\bigm\| \bigm\| \bigm\| \bigm\| (LT
k+d+1Lk+d+1 + \omega 2I) - 1/2LT

k+d+1

\biggl[ 
tk
0d

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| ,(3.4)

\nu d(xk, \tau ) =
\omega 

\| rk\| 

\bigm\| \bigm\| \bigm\| \bigm\| (BT
k+dBk+d + \omega 2I) - 1/2BT

k+d

\biggl[ 
tk
0d

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| .(3.5)

Thus by advancing some number of steps in the bidiagonalization process it is
possible to get a more accurate estimate of the backward error at a previous
iteration. The authors showed how to compute these bounds in O(k+d) time
and memory for LSQR (using some value d > 0 can be helpful because the
least-squares backward error does not in general decrease monotonically for
LSQR).
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LSMB: MINIMIZING LEAST-SQUARES BACKWARD ERROR 1303

The authors also provided the bound

\| PArk\| 2 \geq 
k+d\sum 

i=k+1

\phi 2
i ,

which puts a lower bound on the error \| E1\| (3.3) and can be computed in
O(d) time and memory.

\bullet In 2013, Gratton, Jir\'anek, and Titley-Peloquin [9] proved the bounds

1\sqrt{} 
1 + cond(A)

min

\biggl\{ 
\omega 
\| PAr\| 
\| r\| 

,
\| AT r\| 
\| r\| 

\biggr\} 
\leq \mu (x, \tau ) \leq min

\biggl\{ 
\omega 
\| PAr\| 
\| r\| 

,
\| AT r\| 
\| r\| 

\biggr\} 
and showed that while the upper bound is typically tight, there exist cases
where both LSQR and LSMR produce iterates for which \mu (x, \tau ) is much
smaller than the upper bound. It is therefore conceivable for ill-conditioned
cases that both LSQR and LSMR produce iterates whose backward errors
are much larger than the minimum attainable backward error.

The backward error estimate that we use as the basis for LSMB comes from a gen-
eralization of the bounds (3.4) and (3.5). These estimates have a structure simple
enough that, rather than just using them to estimate the error for LSQR or LSMR,
we can attempt to minimize them directly.

4. Algorithm LSMB. After k steps of the bidiagonalization process, we would
ideally like to solve

(4.1) min
xk

\omega k

\| rk\| 

\bigm\| \bigm\| \bigm\| (ATA+ \omega 2
kI)

 - 1
2AT rk

\bigm\| \bigm\| \bigm\| .
This is difficult because \omega k changes with xk, and so we instead try solve the simpler
problem

(4.2) min
xk

\bigm\| \bigm\| \bigm\| (ATA+ \~\omega 2I) - 
1
2AT rk

\bigm\| \bigm\| \bigm\| ,
where \~\omega is an arbitrary constant. We therefore end up with a family of algorithms
and, interestingly, a bridge between LSQR and LSMR. When \~\omega = 0 we recover LSQR
exactly, and as \~\omega approaches infinity the optimal solution becomes arbitrarily close
to the solution produced by LSMR.

This formulation of the problem can also be used to draw a connection between
the error estimates from LSQR and LSMR. Using the inequality

ATA+ \omega 2
kI \succeq min\{ 1, \omega 2

k/\~\omega 
2\} (ATA+ \~\omega 2I),

we obtain the upper bound

(4.3)
\omega k

\| rk\| 

\bigm\| \bigm\| \bigm\| (ATA+ \omega 2
kI)

 - 1
2AT rk

\bigm\| \bigm\| \bigm\| \leq max\{ \omega k, \~\omega \} 
\| rk\| 

\bigm\| \bigm\| \bigm\| (ATA+ \~\omega 2I) - 
1
2AT rk

\bigm\| \bigm\| \bigm\| .
When \~\omega = 0 this upper bound is precisely equal to \omega k\| PArk\| /\| rk\| , and as \~\omega ap-
proaches infinity the upper bound converges to \| AT rk\| /\| rk\| . Our hope is to find
some intermediate value of \~\omega so that the error estimate for LSMB is smaller than
either of these upper bounds.
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1304 ERIC HALLMAN AND MING GU

4.1. Subproblem for LSMB. We still cannot solve (4.2) exactly because we
do not have the full bidiagonalization of A, but we can express the problem in a
simpler form by using the following theorem.

Theorem 4.1. For any \~\omega \in \BbbR , there exists a \~\beta k+2 (dependent on \~\omega ) such that

V T
k+1(A

TA+ \~\omega 2I) - 1Vk+1 = ( \widetilde BT
k+1

\widetilde Bk+1 + \~\omega 2I) - 1,

where \widetilde Bk+1 =
\bigl( Lk+1

\~\beta k+2e
T
k+1

\bigr) 
and 0 \leq \~\beta k+2 \leq \beta k+2. Furthermore, \sigma \mathrm{m}\mathrm{i}\mathrm{n}( \widetilde Bk+1) \geq \sigma \mathrm{m}\mathrm{i}\mathrm{n}(A)

regardless of \~\omega .

Proof. Let U and V be any matrices such that [Uk+2, U ] and [Vk+1, V ] are square
and orthogonal. Based on the relations in (2.2), we find that

A[Vk+1, V ] = [Uk+2, U ][Uk+2, U ]T [Uk+2Bk+1, AV ]

= [Uk+2, U ]

\Biggl[ 
Bk+1 UT

k+2AV

0 U
T
AV

\Biggr] 

= [Uk+2, U ]

\Biggl[ 
Bk+1 Lk+2V

T
k+2V

0 U
T
AV

\Biggr] 

= [Uk+2, U ]

\Biggl[ 
Bk+1 ek+2\~v

T

0 U
T
AV

\Biggr] 
,

where \~v = \alpha k+2V
T
vk+2. It follows that

[Vk+1, V ]T (ATA+ \~\omega 2I)[Vk+1, V ] =

\biggl[ 
BT

k+1Bk+1 + \~\omega 2I \beta k+2ek+1\~v
T

\beta k+2\~ve
T
k+1

\widetilde A
\biggr] 
,

where \widetilde A = V
T
ATUU

T
AV + \~v\~vT + \~\omega 2I. If we then use the formula for 2 \times 2 block

matrix inversion \biggl[ 
A11 A12

A21 A22

\biggr]  - 1

=

\biggl[ 
(A11  - A12A

 - 1
22 A21)

 - 1 \ast 
\ast \ast 

\biggr] 
,

we can conclude that

V T
k+1(A

TA+ \~\omega 2I) - 1Vk+1 =

\biggl[ 
I
0

\biggr] T \biggl[ 
BT

k+1Bk+1 + \~\omega 2I \beta k+2ek+1\~v
T

\beta k+2\~ve
T
k+1

\widetilde A
\biggr]  - 1 \biggl[ 

I
0

\biggr] 
=
\Bigl( 
BT

k+1Bk+1 + \~\omega 2I  - \beta 2
k+2

\Bigl( 
\~vT \widetilde A - 1\~v

\Bigr) 
ek+1e

T
k+1

\Bigr)  - 1

=
\Bigl( 
LT
k+1Lk+1 + \~\omega 2I + \beta 2

k+2

\Bigl( 
1 - \~vT \widetilde A - 1\~v

\Bigr) 
ek+1e

T
k+1

\Bigr)  - 1

=
\Bigl( \widetilde BT

k+1
\widetilde Bk+1 + \~\omega 2I

\Bigr)  - 1

,

where \widetilde Bk+1 =

\Biggl( 
Lk+1

\beta k+2

\sqrt{} 
1 - \~vT \widetilde A - 1\~v eTk+1

\Biggr) 
.

The third equality follows from the fact that BT
k+1Bk+1 = LT

k+1Lk+1+\beta 2
k+2ek+1e

T
k+1,

and the expression under the radical is nonnegative because \widetilde A \succeq \~v\~vT .
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LSMB: MINIMIZING LEAST-SQUARES BACKWARD ERROR 1305

As for the claim that \sigma \mathrm{m}\mathrm{i}\mathrm{n}( \widetilde Bk+1) \geq \sigma \mathrm{m}\mathrm{i}\mathrm{n}(A), we can conclude from the first part
of the theorem that

\sigma \mathrm{m}\mathrm{a}\mathrm{x}( \widetilde BT
k+1

\widetilde Bk+1 + \~\omega 2I) - 1 \leq \sigma \mathrm{m}\mathrm{a}\mathrm{x}(A
TA+ \~\omega 2I) - 1.

It follows that
\sigma \mathrm{m}\mathrm{i}\mathrm{n}( \widetilde BT

k+1
\widetilde Bk+1 + \~\omega 2I) \geq \sigma \mathrm{m}\mathrm{i}\mathrm{n}(A

TA+ \~\omega 2I),

and therefore
\sigma \mathrm{m}\mathrm{i}\mathrm{n}( \widetilde Bk+1) \geq \sigma \mathrm{m}\mathrm{i}\mathrm{n}(A).

The R factor from the QR factorization of \widetilde Bk+1 is identical to that from Bk+1

(2.8) except for the bottom right entry. Combining this factorization with Theorem 4.1
and relation (2.5), we arrive at the following identity.

Theorem 4.2. For arbitrary \~\omega \in \BbbR and xk = Vkyk,

(4.4)
\bigm\| \bigm\| \bigm\| (ATA+ \~\omega 2I) - 

1
2AT rk

\bigm\| \bigm\| \bigm\| =

\bigm\| \bigm\| \bigm\| \bigm\| (\widetilde RT

k+1
\widetilde Rk+1 + \~\omega 2I) - 

1
2RT

k+1

\biggl( 
fk  - Rkyk

\phi k+1

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| ,
where \widetilde Rk+1 =

\bigl( Rk \theta k+1ek
0 \~c - 1\rho 

k+1

\bigr) 
for some \~c (dependent on \~\omega ) such that ck+1 \leq \~c \leq 1, and

\sigma \mathrm{m}\mathrm{i}\mathrm{n}(\widetilde Rk+1) \geq \sigma \mathrm{m}\mathrm{i}\mathrm{n}(A).

For flexible parameters \~c and \~\omega , we therefore write the LSMB subproblem as

(4.5) min
yk

\bigm\| \bigm\| \bigm\| \bigm\| (\widetilde RT

k+1
\widetilde Rk+1 + \~\omega 2I) - 

1
2RT

k+1

\biggl( 
fk  - Rkyk

\phi k+1

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| , xk = Vkyk.

4.2. Upper and lower bounds. Without a full bidiagonalization of A we can-
not compute \~c exactly, but we can put upper and lower bounds on \~c that let us
compute upper and lower bounds, respectively, on \nu (xk, \tau ). The case \~c = 1 corre-
sponds to the upper bound \nu 0(xk, \tau ) from (3.4), and the case \~c = ck+1 corresponds
to the lower bound \nu 1(xk, \tau ) from (3.5).

If we happen to have a lower bound \sigma \mathrm{e}\mathrm{s}\mathrm{t} on \sigma \mathrm{m}\mathrm{i}\mathrm{n}(A) (in particular, if we are
solving a regularized problem), then we can use the fact that

(4.6) \sigma \mathrm{m}\mathrm{i}\mathrm{n}

\biggl( 
Rk \theta k+1

0 \~c - 1\rho 
k+1

\biggr) 
\geq \sigma \mathrm{e}\mathrm{s}\mathrm{t}

to put a second upper bound on \~c that holds for all \~\omega and that may provide a much
tighter upper bound on the backward error. The paper [3, sect. 4.1] uses a similar
result to put an upper bound on the error \| x - x\ast \| of LSQR, and given a lower bound
\sigma \mathrm{e}\mathrm{s}\mathrm{t} shows how to cheaply compute the largest \~c\mathrm{e}\mathrm{s}\mathrm{t} satisfying (4.6).

Since we are mainly interested in putting an upper bound on the backward error,
we propose the following choice for \~c: given a lower bound on \sigma \mathrm{m}\mathrm{i}\mathrm{n}(A), compute \~c\mathrm{e}\mathrm{s}\mathrm{t}
according to the procedure in [3] and fix \~c = min\{ \~c\mathrm{e}\mathrm{s}\mathrm{t}, 1\} . We also note that by
fixing \~\omega = 0 in (4.4), any upper bound on \~c allows us to compute an upper bound on
\| PArk\| . Although \~c = 1 gives the trivial bound \| PArk\| \leq \| rk\| , any nonzero value of
\sigma \mathrm{e}\mathrm{s}\mathrm{t} will lead to a value of \~c small enough to guarantee that our estimate of \| PArk\| 
converges to zero.

If we continued the bidiagonalization process another d steps, we could tighten
the upper and lower bounds on \~c enough to retroactively minimize \nu d(xk, \tau ) (3.4)
and \nu d(xk, \tau ) (3.5). We consider this unnecessary because we could just as easily try
to minimize the same objective function over the larger subspace Span(Vk+d) (i.e.,
\nu 0(xk+d, \tau )), which would presumably yield a smaller error. We therefore consider
just the case d = 0.
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1306 ERIC HALLMAN AND MING GU

4.3. QL factorization. By applying the QR factorization from (2.10), we can
rewrite subproblem (4.5) as

(4.7) min
yk

\bigm\| \bigm\| \bigm\| \bigm\| ( \widetilde Rk+1
\widetilde RT
k+1 + \~\omega 2I) - 

1
2Rk+1

\biggl( 
fk  - Rkyk

\phi k+1

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| ,
where \widetilde Rk+1 =

\bigl[ Rk \~c - 1\widehat \theta k+1ek
0 \~c - 1\widehat \rho k+1

\bigr] 
. We aim to find the QL factorization

(4.8) \widehat Qk+1

\biggl[ \widetilde RT
k+1

\~\omega I

\biggr] 
=

\biggl[ \widehat RT
k+1

0

\biggr] 
,

since such a factorization would imply that \widetilde Rk+1
\widetilde RT
k+1+ \~\omega 2I = \widehat Rk+1

\widehat RT
k+1, leaving us

with the minimization problem

(4.9) min
yk

\bigm\| \bigm\| \bigm\| \bigm\| \widehat R - 1
k+1Rk+1

\biggl( 
fk  - Rkyk

\phi k+1

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| .
The matrix \widehat Qk+1 can be expressed as a product of 2k + 1 Givens rotations. We
illustrate the first two such rotations for the case k = 2 below, where \ast represents a
nonzero element and \bullet represents an element that is affected by the current rotation:\left[        

\ast 
\ast \ast 

\bullet \bullet 
\ast 

\ast 
\bullet 

\right]        \mapsto \rightarrow 

\left[        
\ast 
\ast \ast 

\bullet \bullet 
\ast 

\ast 
\bullet 0

\right]        ,

\left[        
\ast 
\ast \ast 

\ast \ast 
\ast 

\bullet 
\bullet 0

\right]        \mapsto \rightarrow 

\left[        
\ast 
\ast \ast 

\ast \ast 
\ast 

\bullet 
0 0

\right]        .

In this way the Givens rotations alternate between acting on rows j and j+k+1 and
acting on rows j + k and j + k + 1. If we wanted to compute this QL factorization
in full, we would need to start from scratch with every iteration, which would require
O(k) flops and memory. To solve problem (4.9), however, we only need to compute
the first rotation in (4.8):\biggl[ 

\~c - 1\widehat \theta k+1 \~c - 1\widehat \rho k+1

0 \~\omega 

\biggr] 
\mapsto \rightarrow 

\Biggl[ 
\~c - 2\widehat \theta k+1\widehat \rho k+1/\delta \delta 

\~c - 1\widehat \theta k+1\~\omega /\delta 0

\Biggr] 
,

where we define \delta =
\sqrt{} 

\~c - 2\widehat \rho 2k+1 + \~\omega 2 for convenience. From this we can conclude that

(4.10) \widehat Rk+1 =

\biggl( \widehat R (\~c - 2\widehat \theta k+1\widehat \rho k+1/\delta )ek
0 \delta 

\biggr) 
for some upper bidiagonal matrix \widehat R. Inserting this expression into (4.9) allows us to
solve the LSMB subproblem:

min
yk

\bigm\| \bigm\| \bigm\| \bigm\| \widehat R - 1
k+1Rk+1

\biggl( 
fk  - Rkyk

\phi k+1

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
= min

yk

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\biggl( \widehat R (\~c - 2\widehat \theta k+1\widehat \rho k+1/\delta )ek
0 \delta 

\biggr)  - 1\biggl( 
Rk

\widehat \theta k+1ek
0 \widehat \rho k+1

\biggr) \biggl( 
fk  - Rkyk

\phi k+1

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
= min

yk

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\biggl( \widehat R (\~c - 2\widehat \theta k+1\widehat \rho k+1/\delta )ek
0 \delta 

\biggr)  - 1\biggl( 
Rk(fk  - Rkyk) + \phi k+1

\widehat \theta k+1ek
\phi k+1\widehat \rho k+1

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
=
\bigm| \bigm| \phi k+1

\bigm| \bigm| \widehat \rho k+1/\delta ,
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where the last equality follows because the bottom entry cannot be altered but all
others can be made zero. The minimum is attained when\biggl( 

Rk(fk  - Rkyk) + \phi k+1
\widehat \theta k+1ek

\phi k+1\widehat \rho k+1

\biggr) 
=

\biggl( \widehat R (\~c - 2\widehat \theta k+1\widehat \rho k+1/\delta )ek
0 \delta 

\biggr) \biggl( 
0

\phi k+1\widehat \rho k+1/\delta 

\biggr) 
,

and comparing the top entries shows that the solution yk satisfies

(4.11) Rk(fk  - Rkyk) + \phi k+1
\widehat \theta k+1ek = \phi k+1

\widehat \theta k+1

\biggl( 
\~c - 2\widehat \rho 2k+1

\delta 2

\biggr) 
ek.

4.4. LSMB is a convex combination of LSQR and LSMR. Let yk be the
solution to (4.11), and let xk = Vkyk. By rearranging (4.11) and using identities

(2.14) and (2.15) as well as the fact that \delta =
\sqrt{} 

\~c - 2\widehat \rho 2k+1 + \~\omega 2, we find that

xk = VkR
 - 1
k fk + \phi k+1

\widehat \theta k+1

\biggl( 
\~\omega 2

\delta 2

\biggr) 
VkR

 - 1
k R

 - 1

k ek

= xC
k + \phi k+1

\widehat \theta k+1

\biggl( 
\~\omega 2

\delta 2

\biggr) 
wk

=

\biggl( 
\~c - 2\widehat \rho 2k+1

\delta 2

\biggr) 
xC
k +

\biggl( 
\~\omega 2

\delta 2

\biggr) 
xM
k

= (1 - \gamma )xC
k + \gamma xM

k ,

where

(4.12) \gamma =
\~\omega 2

\delta 2
.

From the definition of \delta it is clear that \gamma always lies in the interval [0, 1]. Thus for any
fixed \~\omega and \~c, the iterate xk that results from solving (4.11) is a convex combination
of the iterates produced by LSQR and LSMR.

4.5. Pseudocode for LSMB.
1. (Initialize)

\beta 1u1 = b, \alpha 1v1 = ATu1, \phi 1 = \beta 1, \rho 
1
= \alpha 1, \rho 0 = 1, \rho 0 = 1,

c0 = 1, s0 = 0, h1 = v1, h0 = 0, xC
0 = 0.

2. For k = 1, 2, 3, . . . repeat steps 3--8.
3. (Continue the bidiagonalization)

\beta k+1uk+1 = Avk  - \alpha kuk, \alpha k+1vk+1 = ATuk+1  - \beta k+1vk.

4. (Construct and apply rotation Pk)

\rho k = (\rho 
k
+ \beta 2

k+1)
1
2 , ck = \rho 

k
/\rho k, sk = \beta k+1/\rho k, \theta k+1 = sk\alpha k+1,

\rho 
k+1

= ck\alpha k+1, \phi k = ck\phi k, \phi k+1 =  - sk\phi k.

5. (Construct and apply rotation P k)

\theta k = sk - 1\rho k, \rho 
k
= ck - 1\rho k, \rho k = (\rho 2

k
+ \theta 2k+1)

1
2 ,

ck = \rho 
k
/\rho k, sk = \theta k+1/\rho k.
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6. (Update h, h, xC
k )

hk = hk  - (\theta k\rho k/(\rho k - 1\rho k - 1))hk - 1,

xC
k = xC

k - 1 + (\phi k/\rho k)hk,

hk+1 = vk+1  - (\theta k+1/\rho k)hk.

7. (Fix \~c, \~\omega ) Upper and lower bounds for \~c were discussed in section 4.2, and
methods for choosing \~\omega are discussed in the following section.

8. (Compute the update for xk)\widehat \theta k+1 = sk\rho k+1
,\widehat \rho k+1 = ck\rho k+1
,

\delta = (\~c - 2\widehat \rho 2k+1 + \~\omega 2)
1
2 ,

xk = xC
k + \phi k+1

\widehat \theta k+1

\biggl( 
\~\omega 2

\delta 2

\biggr) \biggl( 
1

\rho k\rho k

\biggr) 
hk.

Note that xk does not have to be computed explicitly until a stopping rule is
triggered and the algorithm terminates.

5. Error estimates. Here we derive estimates for \| rk\| , \| PArk\| , \| AT rk\| , and
\| xk\| for use in stopping rules, as well as upper and lower bounds on the backward
error. The estimates apply whenever xk is a convex combination of xC

k and xM
k .

Although we have up to this point described LSMB in terms of the parameters \~\omega and
\~c, for the purpose of these error estimates it is simpler to parametrize xk in terms of
\gamma (4.12).

5.1. Estimate of \| \bfitA \bfitT \bfitr \bfitk \| . Substituting (4.12) into (4.11) shows that yk satis-
fies the relation

(5.1) Rk(fk  - Rkyk) =  - \gamma \phi k+1
\widehat \theta k+1ek.

Assuming that Vk+1 is exactly orthogonal, we can combine the above result with the
relations from (2.12) to get that

(5.2) \| AT rk\| =

\bigm\| \bigm\| \bigm\| \bigm\| \biggl( Rk(fk  - Rkyk) + \phi k+1
\widehat \theta k+1ek\widehat \rho k+1\phi k+1

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| =

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ (1 - \gamma )\phi k+1
\widehat \theta k+1\widehat \rho k+1\phi k+1

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| .
5.2. Estimates of \| \bfitr \bfitk \| and \| \bfitP \bfitA \bfitr \bfitk \| . Assuming that Uk+1 is exactly orthog-

onal, we combine the result in (5.1) with the relations from (2.11) to find that

\| rk\| =

\bigm\| \bigm\| \bigm\| \bigm\| \biggl( fk  - Rkyk
\phi k+1

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\Biggl( 
 - \gamma \phi k+1

\widehat \theta k+1R
 - 1

k ek
\phi k+1

\Biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| ,
which can be computed efficiently by performing a third QR factorization,

(5.3) \~QkR
T

k = \~Rk =

\biggl( 
\~Rk - 1

\~\theta kek - 1

0 \~\rho 
k

\biggr) 
.

5.2.1. Pseudocode for computing \| \bfitr \bfitk \| .
1. (Initialize) \~\rho 

0
= 1.

2. For k = 1, 2, 3, . . . repeat steps 3--4.
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3. (Construct and apply rotation \~Pk - 1)

\~\rho k - 1 = (\~\rho 2
k - 1

+ \theta 
2

k)
1
2 ,

\~ck - 1 = \~\rho 
k - 1

/\~\rho k - 1, \~sk - 1 = \theta k/\~\rho k - 1,

\~\theta k = \~sk - 1\rho k, \~\rho 
k
= \~ck - 1\rho k.

4. (Form \| rk\| )

(5.4) \| rk\| =
\Bigl( 
(\gamma \phi k+1

\widehat \theta k+1/\~\rho k)
2 + \phi 

2

k+1

\Bigr) 1
2

.

To estimate \| PArk\| , we evaluate (4.5) with \~\omega = 0 to get

\| PArk\| =

\bigm\| \bigm\| \bigm\| \bigm\| (\widetilde RT

k+1
\widetilde Rk+1)

 - 1
2RT

k+1

\biggl( 
fk  - Rkyk

\phi k+1

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| =

\bigm\| \bigm\| \bigm\| \bigm\| \biggl( fk  - Rkyk
\~c \cdot \phi k+1

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| ,
which can be evaluated in the same manner. In particular, \| PAr

C
k \| = \~c \cdot | \phi k+1| . When

\~c = 1 this estimate will be equal to \| rk\| , but with a nonzero lower bound \sigma \mathrm{m}\mathrm{i}\mathrm{n}(A) we
can put an upper bound on \| PArk\| that converges to zero.

5.3. Estimates of \| \bfitx \bfitk \| and \bfitomega \bfitk . In order to estimate \| xk\| , we use the deri-
vation from LSMR [4]:

\| AT rk\| = \| Vk+1L
T
k+1(\beta 1e1  - Bkyk)\| 

= \| \alpha 1\beta 1e1  - LT
k+1Bkyk\| 

=

\bigm\| \bigm\| \bigm\| \bigm\| \alpha 1\beta 1e1  - RT
k+1

\biggl[ 
Rkyk
0

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
=

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ zk
\zeta k+1

\biggr] 
 - 
\biggl[ 
RkRkyk

0

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| ,
where, like fk (2.8), the leading elements of zk do not change between iterations. We
can therefore express any iterate xk for LSMB in the form

xk = VkR
 - 1
k fk + \gamma \phi k+1

\widehat \theta k+1VkR
 - 1
k R

 - 1

k ek

= xM
k  - (1 - \gamma )VkR

 - 1
k R

 - 1

k ek

= VkR
 - 1
k R

 - 1

k zk + (\gamma  - 1)VkR
 - 1
k R

 - 1

k ek

= VkR
 - 1
k R

 - 1

k

\Bigl( 
zk + (\gamma  - 1)\phi k+1

\widehat \theta k+1ek

\Bigr) 
,

and as in LSMR [4, sect. 3.3], we can use the QR factorization \~QkR
T

k = \~Rk (5.3) and
make a fourth QR factorization \^Qk(Rk

\~QT
k ) =

\^Rk to get the relation

xk = VkR
 - 1
k R

 - 1

k

\Bigl( 
zk + (\gamma  - 1)\phi k+1

\widehat \theta k+1ek

\Bigr) 
= VkQ

T

kR
 - T

k
\~QT
k
\~R - T
k

\Bigl( 
\~RT
k \~zk + (\gamma  - 1)\phi k+1

\widehat \theta k+1ek

\Bigr) 
= VkQ

T

k
\^QT
k
\^R - T
k

\Bigl( 
\^RT
k \^zk + (\gamma  - 1)(\phi k+1

\widehat \theta k+1/\~\rho k)ek

\Bigr) 
= VkQ

T

k
\^QT
k

\Bigl( 
\^zk + (\gamma  - 1)(\phi k+1

\widehat \theta k+1/\~\rho k \^\rho k)ek

\Bigr) 
,
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1310 ERIC HALLMAN AND MING GU

where \~zk and \^zk satisfy the relations \~RT
k \~zk = zk and \^RT

k \^zk = \~zk. Only the final entry

of \~Rk and the bottom 2 \times 2 submatrix of \^Rk change with each iteration, and so by
assuming orthogonality of Vk we arrive at the estimate

(5.5) \| xk\| =
\bigm\| \bigm\| \bigm\| \Bigl[ \^zk - 2, \^\zeta 

k - 1
, \^\zeta 

k
+ (\gamma  - 1)(\phi k+1

\widehat \theta k+1/(\~\rho k \^\rho k))
\Bigr] \bigm\| \bigm\| \bigm\| ,

where the leading entries of \^zk - 2 do not change and so \| \^zk - 2\| is monotonically in-
creasing. It does not necessarily follow that \| xk\| is monotonically increasing, but the
following theorem shows that \| xM

k \| is also a monotonically increasing lower bound
for \| xk\| .

Theorem 5.1. \| xk\| is increasing along the line segment from xM
k to xC

k .

Proof. It is shown in [14, Thm. 7:2b] that xM
k is a convex combination of xM

k - 1

and xC
k and in [5, Thm. 2.3] that \| xM

k \| is monotonically increasing. The claim follows
from the fact that norms are convex.

The estimates of \| rk\| (5.4) and \| xk\| (5.5) then allow us to cheaply estimate
\omega k = \tau \| rk\| /

\sqrt{} 
1 + \tau 2\| xk\| 2. Since \| rk\| increases along the line segment from xC

k to
xM
k and \| xk\| decreases along the same segment, we conclude the following.

Corollary 5.2. \omega k is increasing along the line segment from xC
k to xM

k .

5.4. Estimate of \bfitnu (\bfitx \bfitk , \bfittau ). By using the full QL factorization outlined in (4.8)
and the expression in (4.9) we get the estimate

\~\nu (xk, \tau ) =
\omega k

\| rk\| 

\bigm\| \bigm\| \bigm\| \bigm\| (\widetilde RT

k+1
\widetilde Rk+1 + \omega 2I) - 

1
2RT

k+1

\biggl( 
fk  - Rkyk

\phi k+1

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| (5.6)

=
\omega k

\| rk\| 

\bigm\| \bigm\| \bigm\| \bigm\| \widehat R - 1
k+1

\biggl( 
(1 - \gamma )\phi k+1

\widehat \theta k+1ek
\phi k+1\widehat \rho k+1

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| ,(5.7)

where \gamma depends on \~\omega as in (4.12). This estimate can be computed in O(k) time
and memory, and requires storing all previous values of \theta k and \rho k. As mentioned
in section 4.2, the estimate will be a lower bound on \nu (xk, \tau ) if \~c = ck+1 and an
upper bound if \~c = min\{ \~c\mathrm{e}\mathrm{s}\mathrm{t}, 1\} . In the case \~c = ck+1, we can get an even cheaper
lower bound by computing only the final entry of the vector in (5.7). This O(1) lower
bound requires no extra storage and is still often tight in practice. For the remainder
of the paper, we denote this upper bound and the O(1) lower bound by \nu (xk, \tau ) and
\nu (xk, \tau ), respectively.

5.5. Choosing a value for \~\bfitomega . Assuming that we have chosen a value of \~c that
guarantees an upper bound on the backward error, we would ideally like to choose
\~\omega (or, equivalently, \gamma ) so that the estimate (5.7) is minimized. This is still difficult

to do because \widehat Rk+1 changes with \~\omega , but there are a few reasonable choices we could
make. Since Corollary 5.2 implies that \omega C

k \leq \omega k \leq \omega M
k for all choices of \~\omega , both \omega C

k

and \omega M
k may be reasonable options.

We could also choose \~\omega such that \omega k = \~\omega , in which case we could compute the
error estimate (5.7) in O(1) time. Rearranging (4.12) shows that

(5.8) \~\omega 2 = \~c - 2\widehat \rho 2k+1

\gamma 

1 - \gamma 
,

so substituting this value for \~\omega , using the definition \omega k = \tau \| rk\| /
\sqrt{} 

1 + \tau 2\| xk\| 2, squar-
ing both sides, and rearranging terms leads to the problem

(5.9) \~c - 2\widehat \rho 2k+1(1 + \tau 2\| xk\| 2)\gamma = \tau 2\| rk\| 2(1 - \gamma ).
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Using (5.5) and (5.4) to express \| xk\| 2 and \| rk\| 2 in terms of \gamma yields a cubic equa-
tion. This equation always has at least one real solution with \gamma \in [0, 1], and in our
experiments we have not found a scenario for which there was more than one real
solution.

In practice, our choice does not much matter. Given our suggested bounds on \~c,
it turns out that no choice of \~\omega will yield a solution that substantially outperforms
both LSQR and LSMR. To see this, we combine (5.7) with the expression for \widehat Rk+1

from (4.10) to find that for any \~\omega and resulting iterate xk,

\~\nu (xk, \tau ) =
\omega k

\| rk\| 

\bigm\| \bigm\| \bigm\| \bigm\| \widehat R - 1
k+1

\biggl( 
(1 - \gamma )\phi k+1

\widehat \theta k+1ek
\phi k+1\widehat \rho k+1

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
\geq \omega k

\| rk\| 

\left(  | \phi k+1| \widehat \rho k+1\sqrt{} 
\~c - 2\widehat \rho 2k+1 + \omega 2

k

\right)  
=

| \phi k+1| 
\| rk\| 

\left(  \widehat \rho k+1\~c \cdot \omega k\sqrt{} \widehat \rho 2k+1 + \~c2 \cdot \omega 2
k

\right)  
\geq 

| \phi k+1| \surd 
2\| rk\| 

min\{ \widehat \rho k+1, \~c \cdot \omega k\} 

=
1\surd 
2
min

\Biggl\{ 
| \phi k+1| \widehat \rho k+1

\| rk\| 
, \~c

\tau | \phi k+1| \sqrt{} 
1 + \tau 2\| xk\| 2

\Biggr\} 

\geq 1\surd 
2
min

\Biggl\{ 
\| AT rMk \| 
\| rMk \| 

,
\~c \cdot | \phi k+1| 
\| rCk \| 

\omega C
k

\Biggr\} 
.

The first term is an upper bound on the error for LSMR. If we have chosen \~c so that
\~c = min\{ c\mathrm{e}\mathrm{s}\mathrm{t}, 1\} , then the second term is an upper bound on \omega C

k \| PAr
C
k \| /\| rCk \| , which

is an upper bound on the error for LSQR. Therefore, our backward error estimates
for LSMB will at best be a factor of

\surd 
2 smaller than the better of the estimates

from LSQR and LSMR. Furthermore, if we are solving an inconsistent least-squares
problem and have no lower bound on \sigma \mathrm{m}\mathrm{i}\mathrm{n}(A) (i.e., we use \~c = 1), the estimate
\omega C
k (\~c \cdot | \phi k+1| )/\| rCk \| will not converge to zero. In this situation, the estimate \nu (xk, \tau )

will become arbitrarily close to \| AT rMk \| /\| rMk \| as the error decreases to zero.

5.6. Stopping criteria and convergence. Given dimensionless quantities \tau , \epsilon ,
and \kappa , and \~c = min\{ \~c\mathrm{e}\mathrm{s}\mathrm{t}, 1\} , we propose the following stopping rules:

1. Stop if \nu (xk,\tau )
\| A\| < \epsilon .

2. Stop if cond(A) > \kappa .
Since \| rCk \| , \| PAr

C
k \| , and \| AT rMk \| are monotonically decreasing, we expect the esti-

mate for the first stopping rule to decrease monotonically or at least nearly so. If one
wants to solve the problem so that A and b have relative backward errors at most \alpha 

and \beta , respectively, then \epsilon = \alpha and \tau = \alpha \| A\| 
\beta \| b\| are reasonable choices. If the value of

b is known exactly, then \tau = \infty is an acceptable option, in which case \omega = \| r\| /\| x\| .
As for convergence, both LSQR and LSMR have been proven to converge to the

minimum-norm solution to the least-squares problem. Since LSMB produces only
convex combinations of the iterates from LSQR and LSMR, it must also converge to
the minimum-norm solution.
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5.7. Regularized least squares. LSMB can be extended to the regularized
least-squares problem

min
x

\bigm\| \bigm\| \bigm\| \bigm\| \biggl( A
\lambda I

\biggr) 
x - 

\biggl( 
b
0

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
by defining A =

\bigl( 
A
\lambda I

\bigr) 
and b =

\bigl( 
b
0

\bigr) 
and attempting to minimize

\mu (x, \tau ) = min
E,f

\| E, \tau f\| : (A+ E)T
\bigl[ 
(A+ E)x - (b+ f)

\bigr] 
= 0.

Note that x solves the perturbed problem minx \| (A+E1)x - (b+f)\| 2+\| (\lambda I+E2)x\| 2,
where E =

\bigl( 
E1

E2

\bigr) 
. Although it may be more natural to minimize a structured back-

ward error with the constraint E2 = \Delta \lambda I, we allow E2 to be arbitrary because doing
so ensures that the iterates produced by LSMB will still be convex combinations of
the iterates from LSQR and LSMR, thus preserving the connection between the two
methods. If we use the QR factorization Q2k+1

\bigl( 
Bk

\lambda I

\bigr) 
=
\bigl( 
Rk
0

\bigr) 
defined in [4, sect. 5],

then we arrive at a subproblem with structure nearly identical to (4.5) and proceed as
in the unregularized case. The norms \| rk\| and \| xk\| will change, but can still be esti-
mated cheaply. We omit the details, but note that regularization allows us to obtain
tighter backward error estimates for LSQR for two reasons: First, the inclusion of
any regularization term will guarantee that | \phi k+1| (and thus our estimate of \| PAr

C
k \| )

converges to zero. Second, since \sigma \mathrm{m}\mathrm{i}\mathrm{n}(A) \geq \lambda , we can put a nontrivial upper bound
on \~c. Thus regularization (or, in general, having a good estimate of \sigma \mathrm{m}\mathrm{i}\mathrm{n}(A)) may
potentially make LSQR competitive with LSMR on inconsistent systems.

6. Numerical experiments. We tested our algorithm on overdetermined prob-
lems with matrices from the University of Florida Sparse Matrix Collection [2].

6.1. Problems with \bfitsigma \bfm \bfi \bfn (\bfitA ) unknown. For overdetermined problems we
followed the procedure of Fong and Saunders [4]; problems were downloaded from the
LPnetlib group in MATLAB, and a sparse matrix A was generated by the command
A = (Problem.A)'. To simulate a right preconditioner we scaled the columns of A
to have unit 2-norm.

For a given m \times n matrix A, the right-hand vector was generated according to
the following procedure:

1. x = (1:n)';

2. b = A*x + delta*randn(m,1)*norm(x)*sqrt(m/(m-n));

with \delta = 10 - 4 to generate high-residual problems and \delta = 10 - 10 for low-residual prob-
lems. We ran all problems to a maximum of 20K iterations, or until \nu (xk,\infty )/\| A\| F
was smaller than machine precision. We tested problems with regularization parame-
ters \lambda = 0 and \lambda = 10 - 4, and in both cases used \sigma \mathrm{e}\mathrm{s}\mathrm{t} = \lambda as a lower bound for \sigma \mathrm{m}\mathrm{i}\mathrm{n}(A)
(note that the bound \sigma \mathrm{e}\mathrm{s}\mathrm{t} = 0 fixes the trivial upper bound \~c = 1). In general we
observed the following behavior:

1. The upper bound \nu (xk, \tau ) appeared to be monotonically decreasing in all
cases (Figure 6.1). As expected, based on our conclusions from section 5.5, it
was always approximately equal to the smaller of \| AT rMk \| /\| rMk \| and \omega C

k (\~c \cdot 
| \phi k+1| )/\| rCk \| (our upper bound on \omega C

k \| PAr
C
k \| /\| rCk \| ).

2. Since all test problems were inconsistent, \| AT rMk \| always eventually con-
verged to zero, while \| rCk \| did not. Typically, \| rCk \| would remain smaller
than \| AT rMk \| until the residual became very close to the minimum residual
\| r\ast \| (Figures 6.2 and 6.4).
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LSMB: MINIMIZING LEAST-SQUARES BACKWARD ERROR 1313

Fig. 6.1. The error estimate \nu (xk,\infty ) seems to be monotonically decreasing. The backward
errors from LSQR, LSMR, and LSMB are typically close to each other. While the lower bound
\nu (xk,\infty ) is often accurate, it can sometimes oscillate.

Fig. 6.2. A high-residual problem with \lambda = 10 - 4. The error estimate \nu (xk,\infty ) from LSMB is
nearly equal to the smaller of the error estimates \| AT rMk \| /\| rMk \| from LSMR and \omega C

k (\~c| \phi k+1| )/\| rCk \| 
from LSQR. The value of \gamma is typically very close to 0 or 1, depending on whether LSQR or LSMR
provides the better estimate.

3. For regularized problems, the estimate \omega C
k (\~c \cdot | \phi k+1| )/\| rCk \| reliably converged

to zero (Figures 6.2 and 6.3). For high-residual problems this estimate tended
to be larger than both \omega C

k \| PAr
C
k \| /\| rCk \| and \| AT rMk \| /\| rMk \| . Low-residual

problems showed a much more interesting pattern: in most cases, the estimate
would closely track \omega C

k \| PAr
C
k \| /\| rCk \| until the error was small (around 10 - 8

or 10 - 9), plateau, then closely track \| AT rMk \| /\| rMk \| thereafter (Figure 6.3).
4. When chosen to satisfy the equality \~\omega = \omega k, the value of \gamma was typically

very close to 0 when the LSQR estimates were smaller, and very close to 1
when the LSMR estimates were smaller (Figure 6.2). The iterates from LSMB
therefore tended to be close to those from LSQR in earlier iterations and close
to those from LSMR later on. A notable exception was in the low-residual
regularized cases (Figure 6.3), where \gamma appeared to converge to a value near
0.5! It appears that in low-residual cases where \lambda is relatively small compared
to the singular values of A, both \~c - 1\widehat \rho and \omega converge to values near \lambda , and
as a result (5.9) will have a solution with \gamma near 0.5 when \tau is large. We leave
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1314 ERIC HALLMAN AND MING GU

Fig. 6.3. A low-residual problem with \lambda = 10 - 4. LSQR outperforms LSMR for longer, but the
estimates from the two algorithms eventually converge. Correspondingly, \gamma seems to converge to a
value near 0.5 in these cases.

Fig. 6.4. Estimating \| PArCk \| for high-residual and low-residual problems. On low-residual
problems in particular, even conservative lower bounds on \sigma min(A) may allow LSQR to terminate
before LSMR.

the details for a future investigation.
5. The backward errors from LSQR, LSMR, and LSMB were typically very

close, with the error from LSMB never larger than the error from LSMR
(Figure 6.1). The error from LSQR could sometimes be smaller, typically in
cases where the true value of \omega C

k \| PAr
C
k \| /\| rCk \| was significantly smaller than

both \omega C
k (\~c \cdot | \phi k+1| )/\| rCk \| and \| AT rMk \| /\| rMk \| .

6. The O(1) estimate for the lower bound on \nu (xk,\infty ) (5.4) was often quite accu-
rate (Figure 6.1). In some cases it was very close to the upper bound, allowing
us to estimate the true backward error accurately and at only O(1) cost. In
other cases, however, it could oscillate wildly or underestimate the true back-
ward error by several orders of magnitude. The lower bound therefore does
not appear to be a reliable estimate of the backward error for considering
stopping criteria.

6.2. Problems where \bfitsigma \bfm \bfi \bfn (\bfitA ) is known. For a handful of the smaller test
matrices, we computed \sigma \mathrm{m}\mathrm{i}\mathrm{n}(A) in order to estimate \omega C

k \| PAr
C
k \| /\| rCk \| without having
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Fig. 6.5. Estimating \| PArCk \| for a rank-deficient problem. Even if the smallest singular values
are nonzero, setting \sigma est near the smallest ``nonnegligible"" value appears to produce a useful upper
bound on the backward error.

to add a regularization term. We generated right-hand vectors b in the same manner
as before using \delta = 10 - 4 and \delta = 10 - 10, and we set \sigma \mathrm{e}\mathrm{s}\mathrm{t} = (1 - \epsilon )\sigma \mathrm{m}\mathrm{i}\mathrm{n}(A), with values
of \epsilon including \{ .9, .1, 10 - 4, 10 - 10\} . In general we observed the following behavior:

1. For low-residual problems, even conservative values of \sigma \mathrm{e}\mathrm{s}\mathrm{t} allowed the LSQR
estimate to converge before the estimate \| AT rMk \| /\| rMk \| from LSMR. For
high-residual problems results were more mixed. In some cases all of the
LSQR estimates were smaller than the LSMR estimate (Figure 6.4), but in
some cases the reverse held.

2. In general, tighter estimates of \sigma \mathrm{m}\mathrm{i}\mathrm{n}(A) yielded tighter estimates of \| PAr
C
k \| 

(Figures 6.4 and 6.5). The difference was more pronounced for low-residual
problems, where the estimates were very accurate early on and lost accuracy
as the number of iterations increased. Estimates of \| PAr

C
k \| obtained using

the tightest bounds on \sigma \mathrm{m}\mathrm{i}\mathrm{n}(A) remained accurate for longer.
3. Several rank-deficient matrices were tested as well. These matrices were well-

conditioned except for having a small number of singular values on the order
of machine precision. Using values of \sigma \mathrm{e}\mathrm{s}\mathrm{t} near \sigma \mathrm{m}\mathrm{i}\mathrm{n}(A) offered no benefit,
but setting \sigma \mathrm{e}\mathrm{s}\mathrm{t} to be near the smallest ``nonnegligible"" singular value of A
gave some interesting results (Figure 6.5): estimates no longer gave upper
bounds on \| PAr

C
k \| , but they continued to provide accurate upper bounds

on \nu (xk,\infty )! A likely explanation is that the estimates are upper bounds on
\| PA\prime rk\| , where A\prime is a perturbed matrix close to A.

7. Conclusion. We have shown how to implement LSQR simultaneously with
LSMR at minimal extra cost, and have shown how to estimate the projection \| PArk\| 
cheaply when solving regularized least-squares problems or when a lower bound on
\sigma \mathrm{m}\mathrm{i}\mathrm{n}(A) is available. This improved estimate may allow LSQR to terminate sooner
than LSMR on inconsistent problems, particularly when the residual is small.

In the case of LSQR, the estimate \nu 0(xk \tau ) (3.4) was known to be an upper
bound on \nu (xk, \tau ) and smaller than both \| rCk \| and \| AT rCk \| , and could be computed
in O(k) time and memory. We showed that there exists a point on the line segment
between the iterates xC

k (from LSQR) and xM
k (from LSMR) for which this estimate

could be computed in O(1) time, and we showed how to tighten the error estimate in
regularized cases or when a lower bound on \sigma \mathrm{m}\mathrm{i}\mathrm{n}(A) is available.
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1316 ERIC HALLMAN AND MING GU

In all of our test cases the backward error estimate \nu (xk, \tau ) for LSMB appeared to
be monotonically decreasing, suggesting that measuring the backward error for past
iterates of LSQR should no longer be necessary. As it turns out, however, \nu (xk, \tau )
will never be smaller than the corresponding estimates of LSQR and LSMR by more
than a factor of

\surd 
2. Although LSMB may terminate marginally sooner in some cases,

it may be simpler just to run LSQR and LSMR simultaneously.
A MATLAB implementation of LSMB is available at https://math.berkeley.edu/

\sim ehallman/lsmb/, as is a version that runs LSQR and LSMR simultaneously without
producing the LSMB iterates.

Acknowledgments. We are grateful to the editors and the two anonymous ref-
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presentation of this paper, and for pointing out the paper [10] to us.
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