6.5+6.7: Least Squares

Tuesday, October 18

Warmup

If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, express $\mathbf{u} \cdot \mathbf{v}$ in terms of matrix algebra (i.e. without using the "dot" symbol). ANSWER: $\mathbf{u}^{T} \mathbf{v}=\mathbf{u} \cdot \mathbf{v}$.

If $A=\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right]$, give an interpretation in words of the matrix-vector products $A \mathbf{x}$ and $A^{T} \mathbf{x}$. ANSWER: $A \mathbf{x}$ is a linear combination of the columns of A given by the coefficients of $\mathbf{x} . A^{T} \mathbf{x}$ is a series of dot products between the columns of A and \mathbf{x}, taken independently.

Least Squares

Suppose that $A=Q R$ where R is invertible and Q is orthogonal. Show that $\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}=R^{-1} Q^{T} \mathbf{b}$. ANSWER: $\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}=\left(R^{T} Q^{T} Q R\right)^{-1} R^{T} Q^{T} \mathbf{b}=\left(R^{T} R\right)^{-1} R^{T} Q^{T} \mathbf{b}=R^{-1} R^{-T} R^{T} Q^{T} \mathbf{b}=R^{-1} Q^{T} \mathbf{b}$.

Show that $A\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}=\hat{\mathbf{b}}$, where $\hat{\mathbf{b}}=\operatorname{proj}_{A} \mathbf{b}$.
ANSWER: $A\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}=Q R\left(R^{-1} Q^{T} \mathbf{b}\right)=Q Q^{T} \mathbf{b}=\hat{\mathbf{b}}$.

Find an expression for the distance from \mathbf{b} to the span of A in terms of \mathbf{b}, and A or \mathbf{b} and Q. ANSWER: $\|\mathbf{b}-\hat{\mathbf{b}}\|=\left\|\mathbf{b}-Q Q^{T} \mathbf{b}\right\|=\left\|\left(I-Q Q^{T}\right) \mathbf{b}\right\|$.
Also, $\|\mathbf{b}-\hat{\mathbf{b}}\|=\left\|\mathbf{b}-A\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}\right\|$.

More Least Squares

Say we want to find the best least-squares linear approximation $y=m x+b$ for the four points $(-6,-1),(-2,2)$, $(1,1)$, and $(7,6)$. This amounts to solving the least-squares problem

$$
\left[\begin{array}{l}
b \\
m
\end{array}\right]=\underset{\mathbf{x}}{\arg \min }\left\|\left[\begin{array}{cc}
1 & -6 \\
1 & -2 \\
1 & 1 \\
1 & 7
\end{array}\right] \mathbf{x}=\left[\begin{array}{c}
-1 \\
2 \\
1 \\
6
\end{array}\right]\right\|^{2}
$$

Find the least-squares solution using either the normal equations or a QR decomposition, and plot the line and points.
ANSWER: Let's just do it using the normal equations. A is definitely full-rank since the two columns are linearly independent, so $A^{T} A$ is invertible:

$$
\begin{aligned}
{\left[\begin{array}{c}
b \\
m
\end{array}\right] } & =\left(A^{T} A\right)^{-1} A^{T} \mathbf{b} \\
& =\left[\begin{array}{cc}
4 & 0 \\
0 & 90
\end{array}\right]^{-1}\left[\begin{array}{c}
6 \\
45
\end{array}\right] \\
& =\left[\begin{array}{l}
3 / 2 \\
1 / 2
\end{array}\right] .
\end{aligned}
$$

The optimal line is therefore $y=\frac{1}{2} x+\frac{3}{2}$. Interestingly, this equation was particularly easy to solve because the matrix $A^{T} A$ was diagonal. This means that the columns of A were orthogonal, which (since one of the columns is the all-ones vector) is equivalent to the data points x_{i} having mean zero.

Inner Product Spaces

Define an inner product on \mathbb{P}_{2} by $\langle p, q\rangle=p(-1) q(-1)+p(0) q(0)+p(1) q(1)$. Find the inner products between the vectors $1, t$, and t^{2}. Find an orthogonal basis for \mathbb{P}_{2} with respect to this inner product.
ANSWER: $\langle 1, t\rangle=\left\langle t, t^{2}\right\rangle=0$. $\left\langle 1, t^{2}\right\rangle=2$.
Since 1 and t^{2} are both orthononal to t any linear combination of them will also be orthongal to t, so to find an orthogonal basis we can pick $\mathbf{1}, t$, and $t^{2}+c \cdot \mathbf{1}$ for some constant c such that $0=\left\langle\mathbf{1}, t^{2}+c \cdot \mathbf{1}\right\rangle=$ $\left\langle\mathbf{1}, t^{2}\right\rangle+c\|\mathbf{1}\|^{2}=2+3 c$. Thus $c=-2 / 3$ will work.

