6.7: Inner Product Spaces
 Thursday, October 20

Orthogonality

Find a non-zero vector orthogonal to the vector $\left[\begin{array}{l}a \\ b\end{array}\right]$. Then find all vectors orthogonal to $\left[\begin{array}{l}a \\ b\end{array}\right]$.

Which of the following matrices are orthogonal?

$$
\left[\begin{array}{cc}
1 & -\sqrt{2} / 2 \\
0 & \sqrt{2} 2
\end{array}\right], \quad\left[\begin{array}{cc}
\frac{1}{3} & 0 \\
0 & 3
\end{array}\right], \quad\left[\begin{array}{cc}
\sqrt{2} / 2 & -\sqrt{2} / 2 \\
\sqrt{2} / 2 & \sqrt{2} / 2
\end{array}\right]
$$

Suppose that Q is a (2×2) orthogonal matrix. Sketch the set of all points where Q might possibly take the vector $\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Make a few sketches for possible locations of $Q\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $Q\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Describe the effect of Q in words.

True/False

1. A least-squares solution of $A \mathbf{x}=\mathbf{b}$ is a vector $\widehat{\mathbf{x}}$ such that $A \widehat{\mathbf{x}}=\widehat{\mathbf{b}}$, where $\widehat{\mathbf{b}}$ is the projection of \mathbf{b} onto the column space of A.
2. A least-squares solution of $A \mathbf{x}=\mathbf{b}$ is a vector $\widehat{\mathbf{x}}$ such that $\|\mathbf{b}-A \mathbf{x}\| \leq\|\mathbf{b}-A \widehat{\mathbf{x}}\|$ for all $\mathbf{x} \in \mathbb{R}^{n}$.
3. If the columns of A are linearly independent then the equation $A \mathbf{x}=\mathbf{b}$ has exactly one least-squares solution.
4. If $A=Q R$ and Q has orthogonal columns, then $R=Q^{T} A$.
5. If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is an orthogonal basis for V then so is $\left\{\mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{v}_{1}-\mathbf{v}_{2}\right\}$.

Inner Product Spaces

If $P\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=x_{1} y_{1}+x_{1} y_{2}$, is P an inner product? Why or why not?

Define an inner product on \mathbb{P}_{2} by $\langle p, q\rangle=p(-1) q(-1)+p(0) q(0)+p(1) q(1)$. Find the inner products between the vectors $1, t$, and t^{2}. Find an orthogonal basis for \mathbb{P}_{2} with respect to this inner product.

If we define an inner product on $C[-\pi, \pi]$ by $\langle f, g\rangle=\frac{1}{2 \pi} \int_{x=-\pi}^{\pi} f(x) g(x) d x$, find $\|\sin (x)\|,\|\sin (2 x)\|$, and $\langle\sin (x), \sin (2 x)\rangle$.

