6.7: Inner Product Spaces Thursday, October 20

Orthogonality

Find a non-zero vector orthogonal to the vector $\begin{bmatrix} a \\ b \end{bmatrix}$. Then find *all* vectors orthogonal to $\begin{bmatrix} a \\ b \end{bmatrix}$.

Which of the following matrices are orthogonal?

 $\begin{bmatrix} 1 & -\sqrt{2}/2 \\ 0 & \sqrt{2}2 \end{bmatrix}, \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & 3 \end{bmatrix}, \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix}$

Suppose that Q is a (2×2) orthogonal matrix. Sketch the set of all points where Q might possibly take the vector $\begin{bmatrix} 1\\0 \end{bmatrix}$. Make a few sketches for possible locations of $Q \begin{bmatrix} 1\\0 \end{bmatrix}$ and $Q \begin{bmatrix} 0\\1 \end{bmatrix}$. Describe the effect of Q in words.

True/False

- 1. A least-squares solution of $A\mathbf{x} = \mathbf{b}$ is a vector $\hat{\mathbf{x}}$ such that $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$, where $\hat{\mathbf{b}}$ is the projection of \mathbf{b} onto the column space of A.
- 2. A least-squares solution of $A\mathbf{x} = \mathbf{b}$ is a vector $\hat{\mathbf{x}}$ such that $\|\mathbf{b} A\mathbf{x}\| \le \|\mathbf{b} A\hat{\mathbf{x}}\|$ for all $\mathbf{x} \in \mathbb{R}^n$.
- 3. If the columns of A are linearly independent then the equation $A\mathbf{x} = \mathbf{b}$ has exactly one least-squares solution.
- 4. If A = QR and Q has orthogonal columns, then $R = Q^T A$.
- 5. If $\{\mathbf{v}_1, \mathbf{v}_2\}$ is an orthogonal basis for V then so is $\{\mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_1 \mathbf{v}_2\}$.

Inner Product Spaces

If $P((x_1, x_2), (y_1, y_2)) = x_1y_1 + x_1y_2$, is P an inner product? Why or why not?

Define an inner product on \mathbb{P}_2 by $\langle p, q \rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1)$. Find the inner products between the vectors 1, t, and t^2 . Find an orthogonal basis for \mathbb{P}_2 with respect to this inner product.

If we define an inner product on $C[-\pi,\pi]$ by $\langle f,g\rangle = \frac{1}{2\pi} \int_{x=-\pi}^{\pi} f(x)g(x) dx$, find $\|\sin(x)\|, \|\sin(2x)\|$, and $\langle \sin(x), \sin(2x) \rangle$.