6.1-6.2: Orthogonality and Projection Tuesday, October 11

Warmup

Define $\mathbf{u} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} -1 & 2 & -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 & 1 & -1 \end{bmatrix}$. Find the following:

1. u 	5. $\ \mathbf{u}\ ^2 + 4\ \mathbf{v}\ ^2$	9. $\mathbf{v} \cdot (\mathbf{u} - 2\mathbf{w})$
2. $\ v\ $	6. $\ -3\mathbf{u}\ $	10. $\mathbf{v} \cdot \mathbf{u} - 2\mathbf{v} \cdot \mathbf{w}$
3. $\ \mathbf{w}\ $	7. $\ \mathbf{u} + \mathbf{w}\ ^2$	
4. $\ \mathbf{u} + 2\mathbf{v}\ ^2$	8. $\ \mathbf{v} + \mathbf{w}\ ^2$	

Describe the shortest path from a point to a line.

Orthogonal Complements

If
$$A = \begin{bmatrix} 1 & 0 \\ -1 & 2 \\ 0 & 1 \\ 0 & -3 \end{bmatrix}$$
, find a basis for $(Col(A))^{\perp}$.

Projections

Define $\mathbf{b}_1 = \begin{bmatrix} 1\\1 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} 1\\-1 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 3\\6 \end{bmatrix}$, and let $\hat{\mathbf{y}}$ be the projection of \mathbf{y} onto the span of \mathbf{b}_1 .

- 1. Verify that \mathbf{b}_1 and \mathbf{b}_2 are orthogonal.
- 2. If $\mathbf{y} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2$, find an expression for $\hat{\mathbf{y}}$ in terms of the c_i and \mathbf{b}_i .
- 3. What are c_1 and c_2 in terms of $\mathbf{b}_1 \cdot \mathbf{y}$ and $\mathbf{b}_2 \cdot \mathbf{y}$?
- 4. Sketch a triangle whose vertices are the origin, \mathbf{y} , and $\hat{\mathbf{y}}$. Label the lengths of the sides, and find an expression for $\cos(\mathbf{y}, \mathbf{b}_1)$. Label the appropriate angle.
- 5. Find c_1 and c_2 .
- 6. Show that $\mathbf{y} \hat{\mathbf{y}}$ and $\hat{\mathbf{y}}$ are orthogonal.

Orthogonal Matrices

Find a matrix P such that $P\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix} = \begin{bmatrix}x_3\\x_1\\x_2\end{bmatrix}$. Find expressions for $\|\mathbf{x}\|^2$ and $\|P\mathbf{x}\|^2$. Is P orthogonal?