6.1-6.2: Orthogonality and Projection
 Tuesday, October 11

Warmup

Define $\mathbf{u}=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right], \mathbf{v}=\left[\begin{array}{lll}-1 & 2 & -1\end{array}\right], \mathbf{w}=\left[\begin{array}{lll}1 & 1 & -1\end{array}\right]$. Find the following:

1. $\|\mathbf{u}\|$
2. $\|\mathbf{v}\|$
3. $\|\mathbf{w}\|$
4. $\|\mathbf{u}+2 \mathbf{v}\|^{2}$
5. $\|\mathbf{u}\|^{2}+4\|\mathbf{v}\|^{2}$
6. $\|-3 \mathbf{u}\|$
7. $\|\mathbf{u}+\mathbf{w}\|^{2}$
8. $\|\mathbf{v}+\mathbf{w}\|^{2}$
9. $\mathbf{v} \cdot(\mathbf{u}-2 \mathbf{w})$
10. $\mathbf{v} \cdot \mathbf{u}-2 \mathbf{v} \cdot \mathbf{w}$

Describe the shortest path from a point to a line.

Orthogonal Complements

If $A=\left[\begin{array}{cc}1 & 0 \\ -1 & 2 \\ 0 & 1 \\ 0 & -3\end{array}\right]$, find a basis for $(\operatorname{Col}(A))^{\perp}$.

Projections

Define $\mathbf{b}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right], \mathbf{y}=\left[\begin{array}{l}3 \\ 6\end{array}\right]$, and let $\hat{\mathbf{y}}$ be the projection of \mathbf{y} onto the span of \mathbf{b}_{1}.

1. Verify that \mathbf{b}_{1} and \mathbf{b}_{2} are orthogonal.
2. If $\mathbf{y}=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}$, find an expression for $\hat{\mathbf{y}}$ in terms of the c_{i} and \mathbf{b}_{i}.
3. What are c_{1} and c_{2} in terms of $\mathbf{b}_{1} \cdot \mathbf{y}$ and $\mathbf{b}_{2} \cdot \mathbf{y}$?
4. Sketch a triangle whose vertices are the origin, \mathbf{y}, and $\hat{\mathbf{y}}$. Label the lengths of the sides, and find an expression for $\cos \left(\mathbf{y}, \mathbf{b}_{1}\right)$. Label the appropriate angle.
5. Find c_{1} and c_{2}.
6. Show that $\mathbf{y}-\hat{\mathbf{y}}$ and $\hat{\mathbf{y}}$ are orthogonal.

Orthogonal Matrices

Find a matrix P such that $P\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}x_{3} \\ x_{1} \\ x_{2}\end{array}\right]$. Find expressions for $\|\mathbf{x}\|^{2}$ and $\|P \mathbf{x}\|^{2}$. Is P orthogonal?

