6.3-6.4: Projection and Gram-Schmidt Thursday, October 13

Projection

Find the point on the line that passes through (0,0) and (3,1) closest to the point (5,5). Draw a picture.

If Π is the matrix that projects a point onto the line mentioned above, find Π explicitly. What is its eigendecomposition?

Gram-Schmidt

Find an orthogonal basis for Span $\left\{ \begin{bmatrix} 0\\4\\2 \end{bmatrix}, \begin{bmatrix} 5\\6\\-7 \end{bmatrix} \right\}$.

True/False

- 1. The sum of two orthogonal matrices is an orthogonal matrix.
- 2. The product of two orthogonal matrices is an orthogonal matrix.
- 3. If U is orthogonal then $||U\mathbf{x}|| = ||\mathbf{x}||$ for any \mathbf{x} .
- 4. If U is orthogonal the the angle between $U\mathbf{x}$ and $U\mathbf{y}$ is the same as the angle between \mathbf{x} and \mathbf{y} for any \mathbf{x} and \mathbf{y} .
- 5. If A and B are both diagonalizable and have the same eigenvectors then AB = BA.
- 6. If $A^2 = A$ then all eigenvalues of A are 0 or 1.
- 7. If all eigenvalues of A are 0 or 1 then $A^2 = A$.
- 8. For all **y** and each subspace W the vector $\mathbf{y} \operatorname{proj}_W \mathbf{y}$ is orthogonal to W.
- 9. For any $\mathbf{y} \in \mathbb{R}^n$ and any subspace $W \subset \mathbb{R}^n$, $\operatorname{proj}_W(\operatorname{proj}_W \mathbf{y}) = \operatorname{proj}_W \mathbf{y}$.