6.3-6.4: Projection and Gram-Schmidt Thursday, October 13

Projection

Find the point on the line that passes through (0,0) and (3,1) closest to the point (5,5). Draw a picture. ANSWER: A vector spanning the given line is (3,1), so we can use the formula $\hat{\mathbf{b}} = \frac{\mathbf{a}\mathbf{a}^T\mathbf{b}}{\|\mathbf{a}\|^2}$ and get that the projection is equal to $\begin{bmatrix} 3\\1 \end{bmatrix} \frac{20}{10} = \begin{bmatrix} 6\\2 \end{bmatrix}$.

If Π is the matrix that projects a point onto the line mentioned above, find Π explicitly. What is its eigendecomposition? ANSWER: $\Pi = \frac{1}{10} \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} .9 & .3 \\ .3 & .1 \end{bmatrix}$. Its characteristic polynomial is $\lambda^2 - \lambda$ and so it has eigenvalues 0 and 1. The eigenvectors are $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ with eigenvalue 1 and $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$ with eigenvalue 0.

Gram-Schmidt

Find an orthogonal basis for Span $\left\{ \begin{bmatrix} 0\\4\\2 \end{bmatrix}, \begin{bmatrix} 5\\6\\-7 \end{bmatrix} \right\}$.

ANSWER: Divide the first vector (call it \mathbf{v}_1) by its norm to get $\begin{bmatrix} 0\\ \frac{2}{\sqrt{5}}\\ \frac{1}{\sqrt{5}} \end{bmatrix}$. The inner product of this vector with \mathbf{v}_2 is $\sqrt{5}$, so subtracting $\sqrt{5}$ from \mathbf{v}_2 gives an orthogonal vector $\begin{bmatrix} 5\\ 4\\ -8 \end{bmatrix}$. This vector has norm $\sqrt{105}$, so divide by the norm to get a second orthogonal vector of $\frac{1}{\sqrt{105}} \begin{bmatrix} 5\\ 4\\ -8 \end{bmatrix}$.

True/False

- 1. The sum of two orthogonal matrices is an orthogonal matrix. FALSE: the identity matrix I is orthogonal but I + I = 2I is not.
- 2. The product of two orthogonal matrices is an orthogonal matrix. TRUE: If U and V are orthogonal then $(UV)^T(UV) = V^T U^T UV = V^T IV = V^T V = I$.
- 3. If U is orthogonal then $||U\mathbf{x}|| = ||\mathbf{x}||$ for any \mathbf{x} . TRUE: $||U\mathbf{x}||^2 = \mathbf{x}^T U^T U\mathbf{x} = \mathbf{x}^T \mathbf{x} = ||\mathbf{x}||^2$.
- 4. If U is orthogonal the the angle between $U\mathbf{x}$ and $U\mathbf{y}$ is the same as the angle between \mathbf{x} and \mathbf{y} for any \mathbf{x} and \mathbf{y} . TRUE: In general we know that if θ is the angle between \mathbf{x} and \mathbf{y} then $\mathbf{x}^T\mathbf{y} = \|\mathbf{x}\|\|\mathbf{y}\|\cos\theta$. So

$$\cos\theta(U\mathbf{x}, U\mathbf{y}) = \frac{(U\mathbf{x})^T(U\mathbf{y})}{\|U\mathbf{x}\|\|\|U\mathbf{y}\|} = \frac{\mathbf{x}^T\mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|} = \cos\theta(\mathbf{x}, \mathbf{y})$$

5. If A and B are both diagonalizable and have the same eigenvectors then AB = BA. TRUE: If $A = PD_AP^{-1}$ and $B = PD_BP^{-1}$ then

$$AB = PD_A P^{-1} PD_B P^{-1} = PD_A D_B P^{-1} = PD_B D_A P^{-1} = PD_B P^{-1} PD_A P^{-1} = BA.$$

- 6. If $A^2 = A$ then all eigenvalues of A are 0 or 1. TRUE: If $A\mathbf{x} = \lambda \mathbf{x}$ then $\lambda^2 \mathbf{x} = A^2 \mathbf{x} = A\mathbf{x} = \lambda \mathbf{x}$, so $\lambda^2 = \lambda$ and therefore $\lambda = 0$ or $\lambda = 1$.
- 7. If all eigenvalues of A are 0 or 1 then $A^2 = A$. FALSE: try $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.
- 8. For all \mathbf{y} and each subspace W the vector $\mathbf{y} \operatorname{proj}_W \mathbf{y}$ is orthogonal to W. TRUE: If U is an orthogonal basis for W then

$$U^{T}(\mathbf{y} - \hat{\mathbf{y}}) = U^{T}(\mathbf{y} - UU^{T}\mathbf{y}) = U^{T}\mathbf{y} - U^{T}UU^{T}\mathbf{y} = U^{T}\mathbf{y} - U^{T}\mathbf{y} = 0.$$

9. For any $\mathbf{y} \in \mathbb{R}^n$ and any subspace $W \subset \mathbb{R}^n$, $\operatorname{proj}_W(\operatorname{proj}_W \mathbf{y}) = \operatorname{proj}_W \mathbf{y}$. TRUE: $UU^T UU^T \mathbf{y} = U(U^T U)U^T \mathbf{y} = UU^T \mathbf{y}$.