6.3-6.4: Projection and Gram-Schmidt
 Thursday, October 13

Projection

Find the point on the line that passes through $(0,0)$ and $(3,1)$ closest to the point $(5,5)$. Draw a picture. ANSWER: A vector spanning the given line is $(3,1)$, so we can use the formula $\hat{\mathbf{b}}=\frac{\mathbf{a a}^{T} \mathbf{b}}{\|\mathbf{a}\|^{2}}$ and get that the projection is equal to $\left[\begin{array}{l}3 \\ 1\end{array}\right] \frac{20}{10}=\left[\begin{array}{l}6 \\ 2\end{array}\right]$.

If Π is the matrix that projects a point onto the line mentioned above, find Π explicitly. What is its eigendecomposition?
ANSWER: $\Pi=\frac{1}{10}\left[\begin{array}{l}3 \\ 1\end{array}\right]\left[\begin{array}{ll}3 & 1\end{array}\right]=\left[\begin{array}{cc}.9 & .3 \\ .3 & .1\end{array}\right]$. Its characteristic polynomial is $\lambda^{2}-\lambda$ and so it has eigenvalues 0 and 1. The eigenvectors are $\left[\begin{array}{l}3 \\ 1\end{array}\right]$ with eigenvalue 1 and $\left[\begin{array}{c}-1 \\ 3\end{array}\right]$ with eigenvalue 0 .

Gram-Schmidt

Find an orthogonal basis for $\operatorname{Span}\left\{\left[\begin{array}{l}0 \\ 4 \\ 2\end{array}\right],\left[\begin{array}{c}5 \\ 6 \\ -7\end{array}\right]\right\}$.
ANSWER: Divide the first vector (call it \mathbf{v}_{1}) by its norm to get $\left[\begin{array}{c}0 \\ \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}}\end{array}\right]$. The inner product of this vector with \mathbf{v}_{2} is $\sqrt{5}$, so subtracting $\sqrt{5}$ from \mathbf{v}_{2} gives an orthogonal vector $\left[\begin{array}{c}5 \\ 4 \\ -8\end{array}\right]$. This vector has norm $\sqrt{105}$, so divide by the norm to get a second orthogonal vector of $\frac{1}{\sqrt{105}}\left[\begin{array}{c}5 \\ 4 \\ -8\end{array}\right]$.

True/False

1. The sum of two orthogonal matrices is an orthogonal matrix. FALSE: the identity matrix I is orthogonal but $I+I=2 I$ is not.
2. The product of two orthogonal matrices is an orthogonal matrix. TRUE: If U and V are orthogonal then $(U V)^{T}(U V)=V^{T} U^{T} U V=V^{T} I V=V^{T} V=I$.
3. If U is orthogonal then $\|U \mathbf{x}\|=\|\mathbf{x}\|$ for any \mathbf{x}. TRUE: $\|U \mathbf{x}\|^{2}=\mathbf{x}^{T} U^{T} U \mathbf{x}=\mathbf{x}^{T} \mathbf{x}=\|\mathbf{x}\|^{2}$.
4. If U is orthogonal the the angle between $U \mathbf{x}$ and $U \mathbf{y}$ is the same as the angle between \mathbf{x} and \mathbf{y} for any \mathbf{x} and \mathbf{y}. TRUE: In general we know that if θ is the angle between \mathbf{x} and \mathbf{y} then $\mathbf{x}^{T} \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta$. So

$$
\cos \theta(U \mathbf{x}, U \mathbf{y})=\frac{(U \mathbf{x})^{T}(U \mathbf{y})}{\|U \mathbf{x}\|\|U \mathbf{y}\|}=\frac{\mathbf{x}^{T} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}=\cos \theta(\mathbf{x}, \mathbf{y})
$$

5. If A and B are both diagonalizable and have the same eigenvectors then $A B=B A$. TRUE: If $A=P D_{A} P^{-1}$ and $B=P D_{B} P^{-1}$ then

$$
A B=P D_{A} P^{-1} P D_{B} P^{-1}=P D_{A} D_{B} P^{-1}=P D_{B} D_{A} P^{-1}=P D_{B} P^{-1} P D_{A} P^{-1}=B A
$$

6. If $A^{2}=A$ then all eigenvalues of A are 0 or 1. TRUE: If $A \mathbf{x}=\lambda \mathbf{x}$ then $\lambda^{2} \mathbf{x}=A^{2} \mathbf{x}=A \mathbf{x}=\lambda \mathbf{x}$, so $\lambda^{2}=\lambda$ and therefore $\lambda=0$ or $\lambda=1$.
7. If all eigenvalues of A are 0 or 1 then $A^{2}=A$. FALSE: try $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.
8. For all \mathbf{y} and each subspace W the vector $\mathbf{y}-\operatorname{proj}_{W} \mathbf{y}$ is orthogonal to W. TRUE: If U is an orthogonal basis for W then

$$
U^{T}(\mathbf{y}-\hat{\mathbf{y}})=U^{T}\left(\mathbf{y}-U U^{T} \mathbf{y}\right)=U^{T} \mathbf{y}-U^{T} U U^{T} \mathbf{y}=U^{T} \mathbf{y}-U^{T} \mathbf{y}=0
$$

9. For any $\mathbf{y} \in \mathbb{R}^{n}$ and any subspace $W \subset \mathbb{R}^{n}, \operatorname{proj}_{W}\left(\operatorname{proj}_{W} \mathbf{y}\right)=\operatorname{proj}_{W} \mathbf{y}$. TRUE: $U U^{T} U U^{T} \mathbf{y}=$ $U\left(U^{T} U\right) U^{T} \mathbf{y}=U U^{T} \mathbf{y}$.
