5.2-5.3: Eigenvalues and Diagonalization

Tuesday, October 4

Warmup

True/False:

1. Eigenvectors with distinct eigenvalues are linearly independent.
2. The set of eigenvectors of a matrix A with a particular eigenvalue λ forms a subspace.
3. If A and B are row equivalent then A and B have the same determinant.
4. If A and B are row equivalent then A and B have the same null space.

Find the determinant of $\left[\begin{array}{cc}3-\lambda & 2 \\ 0 & -\lambda\end{array}\right]$ in terms of λ. When is it equal to zero?

If $V=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ and Λ is a diagonal matrix with $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ as its diagonal elements, what is $V \Lambda$?

Diagonalizing a Matrix

Let A be the matrix $\left[\begin{array}{cc}-4 & -8 \\ 3 & 7\end{array}\right]$. Find the characteristic polynomial of A.

Find the eigenvalues of A, and find eigenvectors for those eigenvalues.

Verify that the eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent, and therefore that $V=\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right]$ is invertible.

If $A V=V \Lambda$ and V is invertible, then $V^{-1} A V=\Lambda$. Verify that this is true.

Find A^{4} in terms of Λ and V. Show that your formula is correct.

Use your previous answer to find A^{4}.

Complex Numbers and Eigenvalues

Let i be a number such that $i^{2}=-1$. Simplify:

1. $i^{10}+3 i^{3}$
2. $(3+i)(1-2 i)$
3. $\overline{2+i}$
4. $\frac{1}{1-i}$

If $A^{2}=0$, show that 0 is the only possible eigenvalue of A. Does A have to be the zero matrix?

If $A^{2}=-I$, is it possible for A to have real eigenvalues?

