5.2-5.3: Eigenvalues and Diagonalization
 Tuesday, October 4

Warmup

True/False:

1. Eigenvectors with distinct eigenvalues are linearly independent. TRUE.
2. The set of eigenvectors of a matrix A with a particular eigenvalue λ forms a subspace. TRUE.
3. If A and B are row equivalent then A and B have the same determinant. FALSE. Adding a multiple of one row to another does not change the determinant but scaling and swapping rows do.
4. If A and B are row equivalent then A and B have the same null space. TRUE.

Find the determinant of $\left[\begin{array}{cc}3-\lambda & 2 \\ 0 & -\lambda\end{array}\right]$ in terms of λ. When is it equal to zero?
ANSWER: the matrix is triangular so the determinant is equal to $(3-\lambda)(-\lambda)$, which is zero when $\lambda=0$ or $\lambda=3$.

If $V=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]$ and Λ is a diagonal matrix with $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ as its diagonal elements, what is $V \Lambda$? ANSWER: $V \Lambda=\left[\lambda_{1} \mathbf{v}_{1}, \ldots, \lambda_{n} \mathbf{v}_{n}\right]$.

Diagonalizing a Matrix

Let A be the matrix $\left[\begin{array}{cc}-4 & -8 \\ 3 & 7\end{array}\right]$. Find the characteristic polynomial of A.
ANSWER: $\operatorname{det}\left[\begin{array}{cc}-4-\lambda & -8 \\ 3 & 7-\lambda\end{array}\right]=(-4-\lambda)(7-\lambda)+24=\lambda^{2}-3 \lambda-4$.

Find the eigenvalues of A, and find eigenvectors for those eigenvalues.
ANSWER: the eigenvalues of A are the zeroes of the characteristic polynomial, which are 4 and -1 since $\lambda^{2}-3 \lambda-4=(\lambda-4)(\lambda+1)$.
The eigenvectors of A are then non-trivial elements of the null spaces of $A-4 I$ and $A+I$, or $\left[\begin{array}{cc}-8 & -8 \\ 3 & 3\end{array}\right]$ and $\left[\begin{array}{cc}-3 & -8 \\ 3 & 8\end{array}\right]$. Solving this gives that $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ has eigenvalue 4 and $\left[\begin{array}{c}-8 \\ 3\end{array}\right]$ has eigenvalue -1 . (Verify this!)

Verify that the eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent, and therefore that $V=\left[\mathbf{v}_{1}, \mathbf{v}_{2}\right]$ is invertible.

$$
V^{-1}=\left[\begin{array}{cc}
-1 & -8 \\
1 & 3
\end{array}\right]^{-1}=\frac{1}{5}\left[\begin{array}{cc}
3 & 8 \\
-1 & -1
\end{array}\right] .
$$

If $A V=V \Lambda$ and V is invertible, then $V^{-1} A V=\Lambda$. Verify that this is true.

$$
\begin{aligned}
V^{-1} A V & =\frac{1}{5}\left[\begin{array}{cc}
3 & 8 \\
-1 & -1
\end{array}\right]\left[\begin{array}{cc}
-4 & -8 \\
3 & 7
\end{array}\right]\left[\begin{array}{cc}
-1 & -8 \\
1 & 3
\end{array}\right] \\
& =\frac{1}{5}\left[\begin{array}{cc}
3 & 8 \\
-1 & -1
\end{array}\right]\left[\begin{array}{cc}
-4 & 8 \\
4 & -3
\end{array}\right] \\
& =\frac{1}{5}\left[\begin{array}{cc}
20 & 0 \\
0 & -5
\end{array}\right] \\
& =\left[\begin{array}{cc}
4 & 0 \\
0 & -1
\end{array}\right]
\end{aligned}
$$

Find A^{4} in terms of Λ and V. Show that your formula is correct.

$$
\begin{aligned}
A^{4} & =\left(V \Lambda V^{-1}\right)^{4} \\
& =V \Lambda V^{-1} V \Lambda V^{-1} V \Lambda V^{-1} V \Lambda V^{-1} \\
& =V \Lambda I \Lambda I \Lambda I \Lambda V^{-1} \\
& =V \Lambda^{4} V^{-1}
\end{aligned}
$$

Use your previous answer to find A^{4}.

$$
\begin{aligned}
A^{4} & =V \Lambda^{4} V^{-1} \\
& =\frac{1}{5}\left[\begin{array}{cc}
-1 & -8 \\
1 & 3
\end{array}\right]\left[\begin{array}{cc}
256 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
3 & 8 \\
-1 & -1
\end{array}\right] \\
& =\frac{1}{5}\left[\begin{array}{cc}
-1 & -8 \\
1 & 3
\end{array}\right]\left[\begin{array}{cc}
768 & 2048 \\
-1 & -1
\end{array}\right] \\
& =\frac{1}{5}\left[\begin{array}{cc}
-760 & -2040 \\
765 & 2045
\end{array}\right] \\
& =\left[\begin{array}{cc}
-152 & -408 \\
153 & 409
\end{array}\right]
\end{aligned}
$$

Was that actually easier then just finding A^{4} directly? Probably not, but for much higher powers and larger matrices it would be. More important is the bigger picture of what's going on: the part with eigenvalue 4 is overwhelming the part with eigenvalue -1 .

Complex Numbers and Eigenvalues

Let i be a number such that $i^{2}=-1$. Simplify:

1. $i^{10}+3 i^{3}=-1-3 i$
2. $(3+i)(1-2 i)=5-5 i$
3. $\overline{2+i}=2-i$
4. $\frac{1}{1-i}=\frac{1+i}{(1+i)(1-i)}=\frac{1+i}{2}$.

If $A^{2}=0$, show that 0 is the only possible eigenvalue of A. Does A have to be the zero matrix?
If there is some $\lambda \neq 0$ with eigenvector \mathbf{v}, then $\lambda^{2} \mathbf{v}=\lambda(A \mathbf{v})=A^{2} \mathbf{v}=0 \cdot \mathbf{v}=\mathbf{0}$, so $\lambda^{2}=0$ and therefore $\lambda=0$.
A does not have to be the zero matrix: for example, $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$

If $A^{2}=-I$, is it possible for A to have real eigenvalues?
ANSWER: No. If \mathbf{v} has eigenvalue λ, then applying both sides to \mathbf{v} imply that $\lambda^{2} \mathbf{v}=A^{2} \mathbf{v}=-\mathbf{v}$, so $\lambda^{2}=-1$.

