5.3-5.4: More Eigenvectors, More Diagonalization
 Tuesday, October 6

Warmup

Decide whether each statement and its converse are True or False. Assume A is an $n \times n$ matrix.

1. If A has n linearly independent eigenvectors then it is diagonalizable.
2. If A is diagonalizable then it has n distinct eigenvalues.
3. If A is invertible then it is diagonalizable.
4. If A is invertible then all of its eigenvalues are nonzero.

Define $\mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Find $\lim _{n \rightarrow \infty} A^{n} x_{i}$ for $i=1,2$ for each of the following matrices:

$$
\left[\begin{array}{cc}
2 & 0 \\
0 & -\frac{1}{3}
\end{array}\right], \quad\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad\left[\begin{array}{ll}
2 & 3 \\
0 & 0
\end{array}\right]
$$

Miscellany

If $A=\left[\begin{array}{ll}3 & 2 \\ 0 & 1\end{array}\right]$, find the eigenvalues of $A 2 A$, and $A^{2}-A / 2$. Come up with a conjecture.

If $A^{2}=0$, what can you say about the eigenvalues of A ? What if $A^{2}=A$? If $A \neq I$ but $A^{2}=I$?

If $T: \mathbb{P}_{3} \rightarrow \mathbb{P}_{2}$ is given by $T(p(t))=p(t)-p^{\prime}(t)$, find a matrix representation for T given the bases $\left\{1, t, t^{2}, t^{3}\right\}$ and $\left\{1, t, t^{2}\right\}$.

Obligatory Application: The Fibonacci Sequence

Define: $f_{-1}=1, f_{0}=0$, and for all $n \geq 1, f_{n}=f_{n-1}+f_{n-2}$. Find f_{1} through f_{7}.

There is a matrix A such that $\left[\begin{array}{c}f_{n} \\ f_{n-1}\end{array}\right]=A\left[\begin{array}{c}f_{n-1} \\ f_{n-2}\end{array}\right]$. Find A.

Find the eigenvalues and eigenvectors of A. Call this basis \mathcal{B}.

If $\mathbf{x}_{0}=\left[\begin{array}{c}f_{0} \\ f_{-1}\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, find $\left[\mathbf{x}_{0}\right]_{\mathcal{B}}$ and $[A]_{\mathcal{B}}$.

Use this information to find a closed (non-recursive) formula for f_{n}, the n-th Fibonacci number.

