5.3-5.4: More Eigenvectors, More Diagonalization
 Tuesday, October 6

Warmup

Decide whether each statement and its converse are True or False. Assume A is an $n \times n$ matrix.

1. If A has n linearly independent eigenvectors then it is diagonalizable. TRUE. Converse is TRUE.
2. If A is diagonalizable then it has n distinct eigenvalues. FALSE. Converse is TRUE.
3. If A is invertible then it is diagonalizable. FALSE and FALSE.
4. If A is invertible then all of its eigenvalues are nonzero. TRUE and TRUE.

Define $\mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Find $\lim _{n \rightarrow \infty} A^{n} x_{i}$ for $i=1,2$ for each of the following matrices:

$$
\left[\begin{array}{cc}
2 & 0 \\
0 & -\frac{1}{3}
\end{array}\right], \quad\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad\left[\begin{array}{ll}
2 & 3 \\
0 & 0
\end{array}\right]
$$

ANSWER: Case 1: limits are ∞ and 0 . Case 2: $A^{n} \mathbf{x}_{1}=\mathbf{x}_{1}$ for all n. $A^{n} \mathbf{x}_{2}$ will oscillate between \mathbf{x}_{2} and $-\mathbf{x}_{2}$. Case 3: Both will grow to ∞ as n grows, since both have components in the eigenspace with $\lambda>1$.

Miscellany

If $A=\left[\begin{array}{ll}3 & 2 \\ 0 & 1\end{array}\right]$, find the eigenvalues of $A 2 A$, and $A^{2}-A / 2$. Come up with a conjecture.
ANSWER: in general, for a function f it should hold that $\lambda(f(A))=f(\lambda)$. (Some nuance, depending on how you want to define $f(A)$.)

If $A^{2}=0$, what can you say about the eigenvalues of A ? What if $A^{2}=A$? If $A \neq I$ but $A^{2}=I$? ANSWER: Based on the previous part, we can say that $\lambda^{2}=0$ and so $\lambda=0$ if $A^{2}=0$.
Case 2: If $A^{2}=A$ then $\lambda^{2}=\lambda$, so all eigenvalues of A are 0 or 1 .
Case 3: if $A \neq I$ but $A^{2}=I$ then all eigenvalues are ± 1, and since $A \neq I$ at least one of them is -1 .

If $T: \mathbb{P}_{3} \rightarrow \mathbb{P}_{2}$ is given by $T(p(t))=p(t)-p^{\prime}(t)$, find a matrix representation for T given the bases $\left\{1, t, t^{2}, t^{3}\right\}$ and $\left\{1, t, t^{2}\right\}$.
ANSWER:

$$
T=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 1 & -3
\end{array}\right]
$$

Obligatory Application: The Fibonacci Sequence

Define: $f_{-1}=1, f_{1}=0$, and for all $n \geq 1, f_{n}=f_{n-1}+f_{n-2}$. Find f_{1} through f_{7}.
ANSWER: $f_{n}=0,1,1,2,3,5,8,13, \ldots$

There is a matrix A such that $\left[\begin{array}{c}f_{n} \\ f_{n-1}\end{array}\right]=A\left[\begin{array}{c}f_{n-1} \\ f_{n-2}\end{array}\right]$. Find A.
ANSWER: $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$

Find the eigenvalues and eigenvectors of A. Call this basis \mathcal{B}.
ANSWER: A has eigenvalues $\frac{1 \pm \sqrt{5}}{2}$ and eigenbasis $V=\left[\begin{array}{cc}1 & 1 \\ \frac{-1+\sqrt{5}}{2} & -\frac{1+\sqrt{5}}{2}\end{array}\right]$ (the columns are the eigenvectors).

If $\mathbf{x}_{0}=\left[\begin{array}{c}f_{0} \\ f_{-1}\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, find $\left[\mathbf{x}_{0}\right]_{\mathcal{B}}$ and $[A]_{\mathcal{B}}$.
ANSWER: Because \mathcal{B} is a basis of eigenvalues, $[A]_{\mathcal{B}}=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]=\left[\begin{array}{cc}\frac{1+\sqrt{5}}{2} & 0 \\ 0 & \frac{1-\sqrt{5}}{2}\end{array}\right]$.
Then $\left[\mathbf{x}_{0}\right]_{\mathcal{B}}=V^{-1} \mathbf{x}_{0}=\frac{1}{\sqrt{5}}\left[\begin{array}{c}1 \\ -1\end{array}\right]$.

Use this information to find a closed (non-recursive) formula for f_{n}, the n-th Fibonacci number. ANSWER:

$$
\begin{array}{rlr}
{\left[\begin{array}{c}
f_{n} \\
f_{n-1}
\end{array}\right]} & =A^{n} \mathbf{x}_{0} & =V\left(V^{-1} A^{n} V V^{-1} \mathbf{x}_{0}\right) \\
& =V\left(\frac{1}{\sqrt{5}}\left[\begin{array}{c}
\lambda_{1}^{n} \\
-\lambda_{2}^{n}
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
\frac{\lambda_{1}^{n}-\lambda_{2}^{n}}{\sqrt{5}} \\
\star
\end{array}\right] .
\end{array}
$$

This formula gives that $f_{n}=\frac{\lambda_{1}^{n}-\lambda_{2}^{n}}{\sqrt{5}}$, where $\lambda_{1}, \lambda_{2}=\frac{1 \pm \sqrt{5}}{2}$. You can check that this formula obeys the same recurrence relation as the f_{n}.

