4.4-4.6: Bases, Dimension, and Rank
 Tuesday, September 27

Warmup

Given that B is an invertible matrix, which one of these is not like the others: $\operatorname{Col}(\mathrm{A}), \operatorname{Col}(\mathrm{BA}), \operatorname{Col}(\mathrm{AB})$?

If you have two sets A and B such that $A \subseteq B$ and $B \subseteq A$, what can you conclude about the sets?

If you have a subspace $H \subset V$ such that $\operatorname{dim}(H)=\operatorname{dim}(V)=n$, what can you do to show that $H=V$?

Back to Bases

Let \mathbb{P}_{2} be the set of polynomials of degree at most 2. Define $\mathcal{B}=\left\{1, t, t^{2}\right\}$ and $\mathcal{C}=\left\{\frac{t^{2}-t}{2}, 1-t^{2}, \frac{t^{2}+t}{2}\right\}$.

1. Express t^{2} in terms of both \mathcal{B} and \mathcal{C}.
2. If p is a polynomial such that $p(-1)=1, p(0)=0$ and $p(1)=1$, express p in terms of both \mathcal{B} and \mathcal{C} (Use the fact that if $p=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}+c_{3} \mathbf{b}_{3}$ then $p(x)=c_{1} \mathbf{b}_{1}(x)+c_{2} \mathbf{b}_{2}(x)+c_{3} \mathbf{b}_{3}(x)$ for all x, then solve the resulting linear system.)
3. Let \mathbb{P}_{2} be the set of polynomials of degree at most 2 . Prove that if $T(p)=\{p(-1), p(0), p(1)\}$ then $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{3}$ is a linear transformation. Is it an isomorphism? Justify your answer.
4. Let $S \subseteq \mathbb{P}_{2}$ be the set of polynomials $p \in \mathbb{P}_{2}$ such that $p(3)=1$. Find a basis for S and show that it is isomorphic to \mathbb{R}^{2}.

Rank

Let $A=\left[\begin{array}{cccc}1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\ 5 & -6 & 10 & 7\end{array}\right], B=\left[\begin{array}{cccc}1 & 0 & -1 & 5 \\ 0 & -2 & 5 & -6 \\ 0 & 0 & 0 & 0\end{array}\right]$, and take as given that they are row equivalent.
What is $\operatorname{rank}(\mathrm{A})$? What is dim $\operatorname{Nul}(\mathrm{A})$? Find basis for the column, row, and null spaces of A.

If \mathbf{u} and \mathbf{v} are non-zero vectors, prove that $A=\mathbf{u v}^{T}$ is a rank-1 matrix.

