4.4-4.6: Bases, Dimension, and Rank
 Tuesday, September 27

Warmup

Given that B is an invertible matrix, which one of these is not like the others: $\operatorname{Col}(\mathrm{A}), \operatorname{Col}(\mathrm{BA}), \operatorname{Col}(\mathrm{AB})$? ANSWER: $\operatorname{Col}(\mathrm{BA})$ is the odd one out. Example: $A=e_{1}$ and B swaps the rows of A.

If you have two sets A and B such that $A \subseteq B$ and $B \subseteq A$, what can you conclude about the sets?
ANSWER: You can conclude that $A=B$.

If you have a subspace $H \subset V$ such that $\operatorname{dim}(H)=\operatorname{dim}(V)=n$, what can you do to show that $H=V$? You could show that $V \subset H$. If $H \subset V$ and $V \subset H$, then $V=H$.

Back to Bases

Let \mathbb{P}_{2} be the set of polynomials of degree at most 2 . Define $\mathcal{B}=\left\{1, t, t^{2}\right\}$ and $\mathcal{C}=\left\{\frac{t^{2}-t}{2}, 1-t^{2}, \frac{t^{2}+t}{2}\right\}$.

1. Express t^{2} in terms of both \mathcal{B} and \mathcal{C}.

ANSWER: $t^{2}=\mathbf{b}_{3}=\mathbf{c}_{1}+\mathbf{c}_{3}$.
2. If p is a polynomial such that $p(-1)=1, p(0)=0$ and $p(1)=1$, express p in terms of both \mathcal{B} and \mathcal{C} (Use the fact that if $p=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}+c_{3} \mathbf{b}_{3}$ then $p(x)=c_{1} \mathbf{b}_{1}(x)+c_{2} \mathbf{b}_{2}(x)+c_{3} \mathbf{b}_{3}(x)$ for all x, then solve the resulting linear system.)
ANSWER: For the basis \mathcal{B}, we get the system

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & 0 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
\mathbf{b}_{1} \\
\mathbf{b}_{2} \\
\mathbf{b}_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

which gives the solution $p=\mathbf{b}_{3}$, as before. (You can verify that t^{2} takes on the values $1,0,1$ at $-1,0$, 1 , respectively.) For the basis \mathbf{c} we get the system

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathbf{c}_{1} \\
\mathbf{c}_{2} \\
\mathbf{c}_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],
$$

which gives the solution $p=\mathbf{c}_{1}+\mathbf{c}_{3}$. The basis \mathbf{c} is special in this case because each \mathbf{c}_{i} takes on the value 1 at one of the locations $\{-1,0,1\}$ and 0 at the other two, making it a (theoretically) convenient basis for polynomial interpolation.
3. Let \mathbb{P}_{2} be the set of polynomials of degree at most 2. Prove that if $T(p)=\{p(-1), p(0), p(1)\}$ then $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{3}$ is a linear transformation. Is it an isomorphism? Justify your answer.
ANSWER: To show that it is a linear transformation just verify that $T(p+q)=T(p)+T(q)$ and $T(c \cdot p)=c T(p) . T$ is also an isomorphism. The most convenient way to show this is to note that
$\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \mathbf{c}_{3}\right\}$ from before is a basis, and that $T\left(\mathbf{c}_{1}\right)=\mathbf{e}_{1}, T\left(\mathbf{c}_{2}\right)=\mathbf{e}_{2}, T\left(\mathbf{c}_{3}\right)=\mathbf{e}_{3}$. Since T takes a basis to another basis, it is an isomorphism.
4. Let $S \subseteq \mathbb{P}_{2}$ be the set of polynomials $p \in \mathbb{P}_{2}$ such that $p(3)=0$. Find a basis for S and show that it is isomorphic to \mathbb{R}^{2}.

ANSWER: The vectors $\left\{t-3, t^{2}-9\right\}$ are linearly independent and both in S, so $\operatorname{dim} S \geq 2$. But $S \neq \mathbb{P}_{2}$, so $\operatorname{dim} S<3$. Therefore $\operatorname{dim} S=2$, and the already mentioned vectors are a basis.
Since both S and \mathbb{R}^{2} are 2-dimensional, they are isomorphic.

Rank

Let $A=\left[\begin{array}{cccc}1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\ 5 & -6 & 10 & 7\end{array}\right], B=\left[\begin{array}{cccc}1 & 0 & -1 & 5 \\ 0 & -2 & 5 & -6 \\ 0 & 0 & 0 & 0\end{array}\right]$, and take as given that they are row equivalent. What is $\operatorname{rank}(\mathrm{A})$? What is dim $\operatorname{Nul}(\mathrm{A})$? Find basis for the column, row, and null spaces of A.
ANSWER: Since A and B are row equivalent they must have the same rank. Since B clearly has rank 2, so does A. By the Rank Theorem, the null space of A has dimension $4-2=2$. The first two columns of A make a basis for the column space. The first two rows (since the row rank is also 2) make a basis for the row space of A. Use B and the two free variables in particular to get a basis for the null space of A, since A and B have the same null spaces.

If \mathbf{u} and \mathbf{v} are non-zero vectors, prove that $A=\mathbf{u} \mathbf{v}^{T}$ is a rank-1 matrix.
ANSWER: For any $\mathbf{x}, A \mathbf{x}=\mathbf{u v}^{T} \mathbf{x}=\mathbf{u}\left(\mathbf{v}^{T} \mathbf{x}\right)=k \mathbf{u}$ for some k. Thus $\operatorname{Col}(\mathrm{A})=\operatorname{Span}\{\mathbf{u}\}$, which is a 1-dimensional space.

