4.6,4.7,5.1: Coordinates, Eigenvalues

Sanity Checks

How could you *efficiently* verify each of the following claims?

- 1. \mathbf{z} is a solution of the equation $A\mathbf{x} = \mathbf{b}$.
- 2. \mathbf{y} is in the null space of A.
- 3. $[\mathbf{x}]_{\mathcal{B}} = \mathbf{y}.$
- 4. $[\mathbf{x}]_{\mathcal{B}} = [\mathbf{y}]_{\mathcal{C}}.$
- 5. \mathbf{x} is an eigenvector of A.

Epic Pruf

Critique the following proofs:

Theorem 0.1 (Epic Theorem) If $\mathbf{v}_1 = \sin t$, $\mathbf{v}_2 = \sin 2t$, and $\mathbf{v}_3 = \sin t + \cos t \sin t$, then \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 are linearly independent.

Proof: If the span of these vectors is V, define $T: V \to \mathbb{R}^3$ by $T(a_1 \sin t + a_2 \sin 2t + a_3 \cos t \sin t) = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$.

Then $[T(\mathbf{v}_1), T(\mathbf{v}_2), T(\mathbf{v}_3)] = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. The columns of this matrix are linearly independent, and so form a basis for \mathbb{R}^3 . Therefore $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ was a basis for V.

Theorem 0.2 (Another Epic Theorem) If T is a linear transformation and $T(\mathbf{u})$ and $T(\mathbf{v})$ are linearly dependent, then \mathbf{u} and \mathbf{v} are linearly dependent.

Proof: Prove the converse. If **u** and **v** are linearly dependent then there exist c_1 and c_2 such that $c_1\mathbf{u}+c_2\mathbf{v} = \mathbf{0}$. But then $c_1T(\mathbf{u}) + c_2T(\mathbf{v}) = T(c_1\mathbf{u}+c_2\mathbf{v}) = T(\mathbf{0}) = \mathbf{0}$, so $T(\mathbf{u})$ and $T(\mathbf{v})$ are linearly dependent.

Outer Products

Define $\mathbf{u} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} d \\ e \\ f \end{bmatrix}$. Show that rank $\mathbf{u}\mathbf{v}^T \leq 1$. When is $\mathbf{u}\mathbf{v}^T$ rank zero?

Change of Basis

Let $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2}$ and $\mathcal{C} = {\mathbf{c}_1, \mathbf{c}_2}$ be bases of a vector space V, and say $\mathbf{b}_1 = 6\mathbf{c}_1 - 2\mathbf{c}_2$ and $\mathbf{b}_2 = 9\mathbf{c}_1 - 4\mathbf{c}_2$.

- 1. Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} .
- 2. Find $[\mathbf{x}]_{\mathcal{C}}$ for $\mathbf{x} = -3\mathbf{b}_1 + 2\mathbf{b}_2$.
- 3. Find the change-of-coordinates matrix from \mathcal{C} to \mathcal{B} .

Eigenvectors!

If $A = \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix}$, find the eigenvalues of A and find eigenvectors for those eigenvalues.

If **u** and **v** are nonzero vectors such that $\mathbf{v}^T \mathbf{u} \neq 0$, then the matrix $\mathbf{u}\mathbf{v}^T$ has exactly one nonzero eigenvalue. What is it?

If V is the space of all infinitely differentiable functions and $D: V \to V$ is the derivative operator, find an eigenfunction with eigenvalue 2.