4.6,4.7,5.1: Coordinates, Eigenvalues
 Thursday, September 29

Sanity Checks

How could you efficiently verify each of the following claims?

1. \mathbf{z} is a solution of the equation $A \mathbf{x}=\mathbf{b}$.
2. \mathbf{y} is in the null space of A.
3. $[\mathbf{x}]_{\mathcal{B}}=\mathbf{y}$.
4. $[\mathbf{x}]_{\mathcal{B}}=[\mathbf{y}]_{\mathcal{C}}$.
5. x is an eigenvector of A.

Epic Pruf

Critique the following proofs:
Theorem 0.1 (Epic Theorem) If $\mathbf{v}_{1}=\sin t, \mathbf{v}_{2}=\sin 2 t$, and $\mathbf{v}_{3}=\sin t+\cos t \sin t$, then $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} are linearly indepednent.

Proof: If the span of these vectors is V, define $T: V \rightarrow \mathbb{R}^{3}$ by $T\left(a_{1} \sin t+a_{2} \sin 2 t+a_{3} \cos t \sin t\right)=\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]$. Then $\left[T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), T\left(\mathbf{v}_{3}\right)\right]=\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. The columns of this matrix are linearly independent, and so form a basis for \mathbb{R}^{3}. Therefore $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ was a basis for V.

Theorem 0.2 (Another Epic Theorem) If T is a linear transformation and $T(\mathbf{u})$ and $T(\mathbf{v})$ are linearly dependent, then \mathbf{u} and \mathbf{v} are linearly dependent.

Proof: Prove the converse. If \mathbf{u} and \mathbf{v} are linearly dependent then there exist c_{1} and c_{2} such that $c_{1} \mathbf{u}+c_{2} \mathbf{v}=$ 0. But then $c_{1} T(\mathbf{u})+c_{2} T(\mathbf{v})=T\left(c_{1} \mathbf{u}+c_{2} \mathbf{v}\right)=T(\mathbf{0})=\mathbf{0}$, so $T(\mathbf{u})$ and $T(\mathbf{v})$ are linearly dependent.

Outer Products

Define $\mathbf{u}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}d \\ e \\ f\end{array}\right]$. Show that rank $\mathbf{u v}^{T} \leq 1$. When is $\mathbf{u v}^{T}$ rank zero?

Change of Basis

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$ be bases of a vector space V, and say $\mathbf{b}_{1}=6 \mathbf{c}_{1}-2 \mathbf{c}_{2}$ and $\mathbf{b}_{2}=9 \mathbf{c}_{1}-4 \mathbf{c}_{2}$.

1. Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}.
2. Find $[\mathbf{x}]_{\mathcal{C}}$ for $\mathbf{x}=-3 \mathbf{b}_{1}+2 \mathbf{b}_{2}$.
3. Find the change-of-coordinates matrix from \mathcal{C} to \mathcal{B}.

Eigenvectors!

If $A=\left[\begin{array}{ll}3 & 0 \\ 2 & 1\end{array}\right]$, find the eigenvalues of A and find eigenvectors for those eigenvalues.

If \mathbf{u} and \mathbf{v} are nonzero vectors such that $\mathbf{v}^{T} \mathbf{u} \neq 0$, then the matrix $\mathbf{u v}^{T}$ has exactly one nonzero eigenvalue. What is it?

If V is the space of all infinitely differentiable functions and $D: V \rightarrow V$ is the derivative operator, find an eigenfunction with eigenvalue 2 .

