4.3-4.4: Bases and Coordinate Systems Thursday, September 22

Warmup

True/False:

- 1. If A is an $n \times n$ matrix and det(A) = 0 then A has two identical rows/columns or a row/column of all zeros.
- 2. Let *H* be a subset of a vector space *V*. Suppose that $0 \in H$, **x** and **y** are vectors in *H* such that $\mathbf{x} + \mathbf{y} \in H$, and $c \in \mathbb{R}$ is a scalar such that $c\mathbf{x} \in H$. Then *H* is a subspace of *V*.
- 3. If a set of vectors in \mathbb{R}^n is linearly independent and spans \mathbb{R}^n , then the set has exactly *n* vectors.

Define $\mathbf{u} = (1,0), \mathbf{v} = (0,1), \mathbf{w} = (1,1)$, and suppose you want to get to the point (5,3). How do you get there if you can only travel parallel to \mathbf{u} and \mathbf{v} ? What if you can only travel parallel to \mathbf{v} and \mathbf{w} ?

If we define the basis $\mathcal{B} = \{\mathbf{v}, \mathbf{w}\}$, sketch \mathbb{R}^2 and the point (5,3) according to \mathcal{B} .

Bases

In the vector space of all real-valued functions, find a basis for the subspace spanned by $\{\sin t, \sin 2t, \sin t \cos t\}$.

Find a basis for the set of vectors in \mathbb{R}^3 in the plane x - 3y + z = 0 (Hint: these vectors are solutions to some linear system).

If
$$A = \begin{bmatrix} 1 & 0 & -2 & 2 \\ 0 & 1 & 1 & 4 \\ 3 & -1 & -7 & 3 \end{bmatrix}$$
, find a basis for the null space of A .

Coordinate Systems

Consider three bases for \mathbb{P}_2 : $\mathcal{B} = \{1, t, t^2\}, \mathcal{C} = \{1, t, 2t^2 - 1\}, \mathcal{D} = \{\frac{t^2 - t}{2}, \frac{t^2 + t}{2}, 1 - t^2\}$. Use coordinate vectors to verify that all three of these are bases.

Express the vector t^2 using each of these three bases.

If we want to find a polynomial $P(t) = a_0 + a_1t + a_2t^2$ such that P(-1) = 4, P(0) = 2, and P(1) = 2, which of the bases \mathcal{B} or \mathcal{D} is more convenient for finding P(t)? Why?

Isomorphisms

The set of vectors $V \subset \mathbb{R}^3$ such that x - 3y + z = 0 is not \mathbb{R}^2 , but it is isomorphic to \mathbb{R}^2 . Find an isomorphism $T: V \to \mathbb{R}^2$ (Hint: you only need to say how T acts on a basis of V).

Show that \mathbb{R} and $\{0\}$ are not isomorphic. Show that \mathbb{R}^2 and \mathbb{R} are not isomorphic.