4.3-4.4: Bases and Coordinate Systems
 Thursday, September 22

Warmup

True/False:

1. If A is an $n \times n$ matrix and $\operatorname{det}(A)=0$ then A has two identical rows/columns or a row/column of all zeros.
2. Let H be a subset of a vector space V. Suppose that $0 \in H$, \mathbf{x} and \mathbf{y} are vectors in H such that $\mathbf{x}+\mathbf{y} \in H$, and $c \in \mathbb{R}$ is a scalar such that $c \mathbf{x} \in H$. Then H is a subspace of V.
3. If a set of vectors in \mathbb{R}^{n} is linearly independent and spans \mathbb{R}^{n}, then the set has exactly n vectors.

Define $\mathbf{u}=(1,0), \mathbf{v}=(0,1), \mathbf{w}=(1,1)$, and suppose you want to get to the point (5,3$)$. How do you get there if you can only travel parallel to \mathbf{u} and \mathbf{v} ? What if you can only travel parallel to \mathbf{v} and \mathbf{w} ?

If we define the basis $\mathcal{B}=\{\mathbf{v}, \mathbf{w}\}$, sketch \mathbb{R}^{2} and the point $(5,3)$ according to \mathcal{B}.

Bases

In the vector space of all real-valued functions, find a basis for the subspace spanned by $\{\sin t, \sin 2 t, \sin t \cos t\}$.

Find a basis for the set of vectors in \mathbb{R}^{3} in the plane $x-3 y+z=0$ (Hint: these vectors are solutions to some linear system).

If $A=\left[\begin{array}{cccc}1 & 0 & -2 & 2 \\ 0 & 1 & 1 & 4 \\ 3 & -1 & -7 & 3\end{array}\right]$, find a basis for the null space of A.

Coordinate Systems

Consider three bases for $\mathbb{P}_{2}: \mathcal{B}=\left\{1, t, t^{2}\right\}, \mathcal{C}=\left\{1, t, 2 t^{2}-1\right\}, \mathcal{D}=\left\{\frac{t^{2}-t}{2}, \frac{t^{2}+t}{2}, 1-t^{2}\right\}$. Use coordinate vectors to verify that all three of these are bases.

Express the vector t^{2} using each of these three bases.

If we want to find a polynomial $P(t)=a_{0}+a_{1} t+a_{2} t^{2}$ such that $P(-1)=4, P(0)=2$, and $P(1)=2$, which of the bases \mathcal{B} or \mathcal{D} is more convenient for finding $P(t)$? Why?

Isomorphisms

The set of vectors $V \subset \mathbb{R}^{3}$ such that $x-3 y+z=0$ is not \mathbb{R}^{2}, but it is isomorphic to \mathbb{R}^{2}. Find an isomorphism $T: V \rightarrow \mathbb{R}^{2}$ (Hint: you only need to say how T acts on a basis of V).

Show that \mathbb{R} and $\{0\}$ are not isomorphic. Show that \mathbb{R}^{2} and \mathbb{R} are not isomorphic.

