4.3-4.4: Bases and Coordinate Systems
 Thursday, September 22

Warmup

True/False:

1. If A is an $n \times n$ matrix and $\operatorname{det}(A)=0$ then A has two identical rows/columns or a row/column of all zeros. FALSE: these are sufficient but not necessary to have a linear dependence between the columns.
2. Let H be a subset of a vector space V. Suppose that $0 \in H, \mathbf{x}$ and \mathbf{y} are vectors in H such that $\mathbf{x}+\mathbf{y} \in H$, and $c \in \mathbb{R}$ is a scalar such that $c \mathbf{x} \in H$. Then H is a subspace of V. FALSE: this must be true for all pairs of vectors in H and all scalars.
3. If a set of vectors in \mathbb{R}^{n} is linearly independent and spans \mathbb{R}^{n}, then the set has exactly n vectors. TRUE.

Define $\mathbf{u}=(1,0), \mathbf{v}=(0,1), \mathbf{w}=(1,1)$, and suppose you want to get to the point $(5,3)$. How do you get there if you can only travel parallel to \mathbf{u} and \mathbf{v} ? What if you can only travel parallel to \mathbf{v} and \mathbf{w} ?
$(5,3)=5 \mathbf{u}+3 \mathbf{v}=5 \mathbf{w}-2 \mathbf{v}$.

If we define the basis $\mathcal{B}=\{\mathbf{v}, \mathbf{w}\}$, sketch \mathbb{R}^{2} and the point $(5,3)$ according to \mathcal{B}.
$(5,3)$ should be at the location $(-2,5)$ according to the transformed coordinate axes.

Bases

In the vector space of all real-valued functions, find a basis for the subspace spanned by $\{\sin t, \sin 2 t, \sin t \cos t\}$.

Since $\sin 2 t=2 \sin t \cos t$ the vectors $\{\sin t, \sin 2 t\}$ form a basis.
Find a basis for the set of vectors in \mathbb{R}^{3} in the plane $x-3 y+z=0$ (Hint: these vectors are solutions to some linear system).
A basis could be $\{(3,1,0),(-1,0,1)\}$.

If $A=\left[\begin{array}{cccc}1 & 0 & -2 & 2 \\ 0 & 1 & 1 & 4 \\ 3 & -1 & -7 & 3\end{array}\right]$, find a basis for the null space of A.

$$
\begin{aligned}
{\left[\begin{array}{cccc}
1 & 0 & -2 & 2 \\
0 & 1 & 1 & 4 \\
3 & -1 & -7 & 3
\end{array}\right] } & \sim\left[\begin{array}{cccc}
1 & 0 & -2 & 2 \\
0 & 1 & 1 & 4 \\
0 & -1 & -1 & -3
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
1 & 0 & -2 & 2 \\
0 & 1 & 1 & 4 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

The null space is 1-dimensional and given by the equations $x_{4}=0, x_{3}$ is free, $x_{2}+x_{3}=0$, and $x_{1}=2 x_{3}$, so the null space is spanned by $\left[\begin{array}{c}2 \\ -1 \\ 1 \\ 0\end{array}\right]$.
Multiply A with this vector and verify that it is zero as a sanity check.

Coordinate Systems

Consider three bases for $\mathbb{P}_{2}: \mathcal{B}=\left\{1, t, t^{2}\right\}, \mathcal{C}=\left\{1, t, 2 t^{2}-1\right\}, \mathcal{D}=\left\{\frac{t^{2}-t}{2}, \frac{t^{2}+t}{2}, 1-t^{2}\right\}$. Use coordinate vectors to verify that all three of these are bases.
If we use the transformation $a_{0}+a_{1} t+a_{2} t^{2} \mapsto\left(a_{0}, a_{1}, a_{2}\right)$, then the bases get transformed to

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right],\left[\begin{array}{ccc}
0 & 0 & 1 \\
\frac{-1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{2} & 1
\end{array}\right],
$$

all of which have nonzero determinant and therefore have linearly independent columns.

Express the vector t^{2} using each of these three bases.
$t^{2}=\mathbf{b}_{1}=\left(\mathbf{c}_{3}+\mathbf{c}_{1}\right) / 2={ }_{1}+{ }_{2}$.

If we want to find a polynomial $P(t)=a_{0}+a_{1} t+a_{2} t^{2}$ such that $P(-1)=4, P(0)=2$, and $P(1)=2$, which of the bases \mathcal{B} or \mathcal{D} is more convenient for finding $P(t)$? Why?
The basis \mathcal{D} is more convenient because the coordinates are exactly the values of the polynomial at $1,-1$, and 0 , respectively.

Isomorphisms

The set of vectors $V \subset \mathbb{R}^{3}$ such that $x-3 y+z=0$ is not \mathbb{R}^{2}, but it is isomorphic to \mathbb{R}^{2}. Find an isomorphism $T: V \rightarrow \mathbb{R}^{2}$ (Hint: you only need to say how T acts on a basis of V).
Take $T(3,1,0)=(1,0)$ and $T(1,0,-1)=(0,1)$. We could more easily specify an isomorphism in the other direction: if $S(1,0)=(3,1,0)$ and $S(0,1)=(1,0,-1)$, then S has the representation $\left[\begin{array}{cc}3 & 1 \\ 1 & 0 \\ 0 & -1\end{array}\right]$ and
$T S=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Show that \mathbb{R} and $\{0\}$ are not isomorphic. Show that \mathbb{R}^{2} and \mathbb{R} are not isomorphic.
Easy answer: they have different dimensions.
Answer from first principles: Let $T: \mathbb{R} \rightarrow\{0\}$ be a linear transformation. Then $T(1)=T(0)=0$, so T cannot be onto. Thus there is no linear transformation that is 1-1 and onto.
Similarly, let $T \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a linear transformation. Let $T(1,0)=a, T(0,1)=b$. Then either $a=0$, in which case T is not $1-1$, or $a \neq 0$, in which case $T(-b / a, 1)=(-b / a) \cdot a+b=0$, so again T is not $1-1$. There is therefore no 1-1 linear transformation, and so the spaces are not isomorphic.

