4.3-4.4: Bases and Coordinate Systems Thursday, September 22

Warmup

True/False:

- 1. If A is an $n \times n$ matrix and det(A) = 0 then A has two identical rows/columns or a row/column of all zeros. FALSE: these are *sufficient* but not *necessary* to have a linear dependence between the columns.
- 2. Let *H* be a subset of a vector space *V*. Suppose that $0 \in H$, **x** and **y** are vectors in *H* such that $\mathbf{x} + \mathbf{y} \in H$, and $c \in \mathbb{R}$ is a scalar such that $c\mathbf{x} \in H$. Then *H* is a subspace of *V*. FALSE: this must be true for *all* pairs of vectors in *H* and *all* scalars.
- 3. If a set of vectors in \mathbb{R}^n is linearly independent and spans \mathbb{R}^n , then the set has exactly *n* vectors. TRUE.

Define $\mathbf{u} = (1,0), \mathbf{v} = (0,1), \mathbf{w} = (1,1)$, and suppose you want to get to the point (5,3). How do you get there if you can only travel parallel to \mathbf{u} and \mathbf{v} ? What if you can only travel parallel to \mathbf{v} and \mathbf{w} ? $(5,3) = 5\mathbf{u} + 3\mathbf{v} = 5\mathbf{w} - 2\mathbf{v}$.

If we define the basis $\mathcal{B} = \{\mathbf{v}, \mathbf{w}\}$, sketch \mathbb{R}^2 and the point (5,3) according to \mathcal{B} . (5,3) should be at the location (-2,5) according to the transformed coordinate axes.

Bases

In the vector space of all real-valued functions, find a basis for the subspace spanned by $\{\sin t, \sin 2t, \sin t \cos t\}$.

Since $\sin 2t = 2 \sin t \cos t$ the vectors $\{\sin t, \sin 2t\}$ form a basis. Find a basis for the set of vectors in \mathbb{R}^3 in the plane x - 3y + z = 0 (Hint: these vectors are solutions to some linear system). A basis could be $\{(3, 1, 0), (-1, 0, 1)\}$.

If
$$A = \begin{bmatrix} 1 & 0 & -2 & 2 \\ 0 & 1 & 1 & 4 \\ 3 & -1 & -7 & 3 \end{bmatrix}$$
, find a basis for the null space of A .

$$\begin{bmatrix} 1 & 0 & -2 & 2 \\ 0 & 1 & 1 & 4 \\ 3 & -1 & -7 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 & 2 \\ 0 & 1 & 1 & 4 \\ 0 & -1 & -1 & -3 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & -2 & 2 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & -2 & 2 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The null space is 1-dimensional and given by the equations $x_4 = 0$, x_3 is free, $x_2 + x_3 = 0$, and $x_1 = 2x_3$, so the null space is spanned by $\begin{bmatrix} 2 \\ -1 \\ 1 \\ 0 \end{bmatrix}$.

Multiply A with this vector and verify that it is zero as a sanity check.

Coordinate Systems

Consider three bases for \mathbb{P}_2 : $\mathcal{B} = \{1, t, t^2\}, \mathcal{C} = \{1, t, 2t^2 - 1\}, \mathcal{D} = \{\frac{t^2 - t}{2}, \frac{t^2 + t}{2}, 1 - t^2\}$. Use coordinate vectors to verify that all three of these are bases.

If we use the transformation $a_0 + a_1t + a_2t^2 \mapsto (a_0, a_1, a_2)$, then the bases get transformed to

[1	0	0	[1	0	-1]		0	0	1]	
0	1	0	, 0	1	0	,	$\frac{-1}{2}$	$\frac{1}{2}$	0	,
0	0	1	0	0	2		$\begin{bmatrix} \frac{1}{2} \end{bmatrix}$	$\frac{1}{2}$	1	

all of which have nonzero determinant and therefore have linearly independent columns.

Express the vector t^2 using each of these three bases. $t^2 = \mathbf{b}_1 = (\mathbf{c}_3 + \mathbf{c}_1)/2 = 1 + 2.$

If we want to find a polynomial $P(t) = a_0 + a_1t + a_2t^2$ such that P(-1) = 4, P(0) = 2, and P(1) = 2, which of the bases \mathcal{B} or \mathcal{D} is more convenient for finding P(t)? Why?

The basis \mathcal{D} is more convenient because the coordinates are exactly the values of the polynomial at 1, -1, and 0, respectively.

Isomorphisms

The set of vectors $V \subset \mathbb{R}^3$ such that x - 3y + z = 0 is not \mathbb{R}^2 , but it is isomorphic to \mathbb{R}^2 . Find an isomorphism $T: V \to \mathbb{R}^2$ (Hint: you only need to say how T acts on a basis of V).

Take T(3,1,0) = (1,0) and T(1,0,-1) = (0,1). We could more easily specify an isomorphism in the other direction: if S(1,0) = (3,1,0) and S(0,1) = (1,0,-1), then S has the representation $\begin{vmatrix} \tilde{1} & 0 \\ 0 & -1 \end{vmatrix}$ and

$$TS = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Show that $\mathbb R$ and $\{0\}$ are not isomorphic. Show that $\mathbb R^2$ and $\mathbb R$ are not isomorphic.

Easy answer: they have different dimensions.

Answer from first principles: Let $T : \mathbb{R} \to \{0\}$ be a linear transformation. Then T(1) = T(0) = 0, so T cannot be onto. Thus there is no linear transformation that is 1-1 and onto.

Similarly, let $T\mathbb{R}^2 \to \mathbb{R}$ be a linear transformation. Let T(1,0) = a, T(0,1) = b. Then either a = 0, in which case T is not 1-1, or $a \neq 0$, in which case $T(-b/a, 1) = (-b/a) \cdot a + b = 0$, so again T is not 1-1. There is therefore no 1-1 linear transformation, and so the spaces are not isomorphic.