2.3-2.5: Matrix Algebra
 Tuesday, September 13

Logic Warmup

State the contrapositive (i.e. "if (not B) then (not A)") of each of the following:

1. If $m n$ is odd then m is odd and n is odd.
2. If a number n is divisible by 2 and 3 then it is divisible by 6 .
3. If a function f is not one-to-one then for every function $g, g \circ f$ is also not one-to-one.

Block Matrices

Evaluate each of the following matrix products:

1. $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]$
2. $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\left[\begin{array}{lll}3 & 4 & 5\end{array}\right]$

Prove the following (assuming all relevant matrices are $n \times n$). For which statements is it simpler to prove the contrapositive?

1. If $A \mathbf{x}=\mathbf{0}$ has a unique solution then A is one-to-one.
2. A is invertible if and only if A^{T} is invertible.
3. If A is not invertible then $B A$ is also not invertible.
4. If A is onto then A^{2} is also onto.

Evaluate the matrix product $\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & 3 & 3 \\ 4 & 1 & 0\end{array}\right]\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$ first by finding each entry as an inner product, then as a sum of outer products. Which is simpler?

If $A=\mathbf{u v}^{T}$ where $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$, what is the span of the columns of A ?

Evaluate the following:

1. $\left[\begin{array}{ll}A & B\end{array}\right]\left[\begin{array}{l}B \\ C\end{array}\right]$
2. $\left[\begin{array}{cc}A & B \\ 0 & I\end{array}\right]^{4}$
3. $\left[\begin{array}{cc}I & B \\ 0 & I\end{array}\right]^{-1}$
4. $\left[\begin{array}{ccc}I & A & 0 \\ 0 & I & B \\ 0 & 0 & I\end{array}\right]^{-1}$

If $\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]=\left[\begin{array}{ll}L_{1} & 0 \\ L_{2} & I\end{array}\right]\left[\begin{array}{cc}U_{1} & U_{2} \\ 0 & S\end{array}\right]$, find the following:

1. L_{2} and U_{2}, in terms of L_{1}, U_{1}, and the blocks of A.
2. S, in terms of A_{22} and the blocks of L and U.
3. S, entirely in terms of the blocks of A.
