2.3-2.5: Matrix Algebra

Tuesday, September 13

Logic Warmup

State the contrapositive (i.e. "if (not B) then (not A)") of each of the following:

1. If $m n$ is odd then m is odd and n is odd. If m is even or n is even then $m n$ is also even.
2. If a number n is divisible by 2 and 3 then it is divisible by 6 . If n is not divisible by 6 then it is not divisible by 2 or not divisible by 3 .
3. If a function f is not one-to-one then for every function $g, g \circ f$ is also not one-to-one. If there exists some g such that $g \circ f$ is one-to-one, then f is also one-to-one.

Block Matrices

Evaluate each of the following matrix products:
1.

$$
\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]=1 \cdot 3+2 \cdot 4+3 \cdot 5=26
$$

2.

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\left[\begin{array}{lll}
3 & 4 & 5
\end{array}\right]=\left[\begin{array}{ccc}
3 & 4 & 5 \\
6 & 8 & 10 \\
9 & 12 & 15
\end{array}\right]
$$

Prove the following (assuming all relevant matrices are $n \times n$). For which statements is it simpler to prove the contrapositive?

1. If $A \mathbf{x}=\mathbf{0}$ has a unique solution then A is one-to-one.

The Inverse Matrix theorem implies this immediately. But if we want to prove it without the IMT, try the contrapositive: suppose that A is not $1-1$, then there exist $v \neq w$ with $A(v)=A(w)$. But then $v-w \neq 0$ and $A(v-w)=0$, so $A \mathbf{x}=\mathbf{0}$ does not have a unique solution.
2. A is invertible if and only if A^{T} is invertible.

Direct: If A is invertible, then there exists B such that $B A=I$. But then $A^{T} B^{T}=(B A)^{T}=I^{T}=I$, so B^{T} is an inverse for A^{T}.
3. If A is not invertible then $B A$ is also not invertible.

Several different methods: if A is not invertible then $A \mathbf{x}=\mathbf{0}$ has some non-zero solution \mathbf{v}. But then $B A \mathbf{v}=B(A \mathbf{v})=B \mathbf{0}=\mathbf{0}$, so $B A$ has a non-trivial solution to the homogeneous equation and therefore is also not invertible.
4. If A is onto then A^{2} is also onto.

Let \mathbf{b} be arbitrary. Then there is some \mathbf{x} such that $A \mathbf{x}=\mathbf{b}$, but there is also some \mathbf{w} such that $A \mathbf{w}=\mathbf{x}$. Then $A^{2} \mathbf{w}=A(A \mathbf{w})=A \mathbf{x}=\mathbf{b}$, so A^{2} is onto.

Remainder omitted because it was not relevant to the syllabus. Practice determinants instead!

