4.1-4.2: Vector Spaces Thursday, September 15

0.1 Matrix Patterns

Define $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$, $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, $P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Find DA, AD, PA, AP^T , and PAP^T .

Calculate the determinants of the following matrices

	[1	3	-6	π^{π}	1]		[1	0	0	0	0		$\left[-4\right]$	0	1	0]
	2	$\sqrt{2}$	77	0	2		0	0	1	0	0	2	0	3	3	2
1.	3	-3	.3	.03	3	2.	0	0	0	0	2	J.	1	0	-1	-1
	4	10^{100}	$\sin(12)$	8	4		0	1	0	0	0		2	6	0	0
	5	0	-5	0	5		0	0	0	-3	0		-			-

Subspaces

Describe, geometrically, all subspaces of \mathbb{R}^3 .

Which of the following are subspaces of the space of 2×2 matrices? Justify your answers:

- 1. $\{A : A = -A^T\}$
- 2. $\{A : A^2 = I\}$

Derivative

Let V be the set of all infinitely differentiable functions on \mathbb{R} , and let $D: V \to V$ be the derivative operator (i.e. D(f) = f').

- 1. Is D a linear transformation? Justify your answer.
- 2. Which of the following are subspaces?
 - (a) $\{f: D(f) = 0\}$
 - (b) $\{f: D(f) = 1\}$
 - (c) $\{f: D(f) = ax + b, a, b, \in \mathbb{R}\}$
- 3. What is the kernel of D?
- 3. What is the Kerner of \mathbb{Z} . 4. Let \mathbb{P}_2 be the set of degree 2 polynomials, and represent the polynomial $a_2x^2 + a_1x + a_0\begin{bmatrix}a_0\\a_1\\a_2\end{bmatrix}$. What is the matrix representation of D?
- 5. What would this look like if we tried it for the space of *all* polynomials?

If
$$A = \begin{bmatrix} 1 & 3 & -4 & -3 & 1 \\ 0 & 1 & -3 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
, what are Col(A) and Nul(A)?

If A and B are matrices, what is the relation between Col(A) and Col(AB)? What about Nul(B) and Nul(AB)?