4.1-4.2: Vector Spaces
 Thursday, September 15

0.1 Matrix Patterns

Define $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right], D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right], P=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$. Find $D A, A D, P A, A P^{T}$, and $P A P^{T}$.

Calculate the determinants of the following matrices

1. $\left[\begin{array}{ccccc}1 & 3 & -6 & \pi^{\pi} & 1 \\ 2 & \sqrt{2} & 77 & 0 & 2 \\ 3 & -3 & .3 & .03 & 3 \\ 4 & 10^{100} & \sin (12) & 8 & 4 \\ 5 & 0 & -5 & 0 & 5\end{array}\right]$
2. $\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -3 & 0\end{array}\right]$
3. $\left[\begin{array}{cccc}-4 & 0 & 1 & 0 \\ 0 & 3 & 3 & 2 \\ 1 & 0 & -1 & -1 \\ 2 & 6 & 0 & 0\end{array}\right]$

Subspaces

Describe, geometrically, all subspaces of \mathbb{R}^{3}.

Which of the following are subspaces of the space of 2×2 matrices? Justify your answers:

1. $\left\{A: A=-A^{T}\right\}$
2. $\left\{A: A^{2}=I\right\}$

Derivative

Let V be the set of all infinitely differentiable functions on \mathbb{R}, and let $D: V \rightarrow V$ be the derivative operator (i.e. $D(f)=f^{\prime}$).

1. Is D a linear tranformation? Justify your answer.
2. Which of the following are subspaces?
(a) $\{f: D(f)=0\}$
(b) $\{f: D(f)=1\}$
(c) $\{f: D(f)=a x+b, a, b, \in \mathbb{R}\}$
3. What is the kernel of D ?
4. Let \mathbb{P}_{2} be the set of degree 2 polynomials, and represent the polynomial $a_{2} x^{2}+a_{1} x+a_{0}\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2}\end{array}\right]$. What is the matrix representation of D ?
5. What would this look like if we tried it for the space of all polynomials?

If $A=\left[\begin{array}{ccccc}1 & 3 & -4 & -3 & 1 \\ 0 & 1 & -3 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$, what are $\operatorname{Col}(\mathrm{A})$ and $\operatorname{Nul}(\mathrm{A}) ?$

If A and B are matrices, what is the relation between $\operatorname{Col}(\mathrm{A})$ and $\operatorname{Col}(\mathrm{AB})$? What about $\operatorname{Nul}(\mathrm{B})$ and $\operatorname{Nul}(\mathrm{AB})$?

