4.1-4.2: Vector Spaces
 Thursday, September 15

0.1 Matrix Patterns

Define $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right], D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right], P=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$. Find $D A, A D, P A, A P^{T}$, and $P A P^{T}$.
ANSWER: $D A$ scales the rows of $A, A D$ scales the columns. $P A$ swaps the rows of $A, A P^{T}$ swaps the corresponding columns, and $P A P^{T}$ does both.

Calculate the determinants of the following matrices

1. $\left[\begin{array}{ccccc}1 & 3 & -6 & \pi^{\pi} & 1 \\ 2 & \sqrt{2} & 77 & 0 & 2 \\ 3 & -3 & .3 & .03 & 3 \\ 4 & 10^{100} & \sin (12) & 8 & 4 \\ 5 & 0 & -5 & 0 & 5\end{array}\right]: 0$ because two columns are the same.
2. $\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -3 & 0\end{array}\right]: 6$, I think? It's either 6 or -6 , but use cofactor expansion.
3. $\left.\quad \begin{array}{cccc}-4 & 0 & 1 & 0 \\ 0 & 3 & 3 & 2 \\ 1 & 0 & -1 & -1 \\ 2 & 6 & 0 & 0\end{array}\right]$: lots of ways to reduce this, but I'll try by adding 4 times column 3 to column 1

$$
\begin{aligned}
\operatorname{Det}\left[\begin{array}{cccc}
-4 & 0 & 1 & 0 \\
0 & 3 & 3 & 2 \\
1 & 0 & -1 & -1 \\
2 & 6 & 0 & 0
\end{array}\right] & =\operatorname{Det}\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
12 & 3 & 3 & 2 \\
-3 & 0 & -1 & -1 \\
2 & 6 & 0 & 0
\end{array}\right] \\
& =\operatorname{Det}\left[\begin{array}{ccc}
12 & 3 & 2 \\
-3 & 0 & -1 \\
2 & 6 & 0
\end{array}\right] \\
& =\operatorname{Det}\left[\begin{array}{ccc}
6 & 3 & 0 \\
-3 & 0 & -3 \\
2 & 6 & 0
\end{array}\right] \\
& =3 \cdot \operatorname{Det}\left[\begin{array}{cc}
6 & 3 \\
2 & 6
\end{array}\right] \\
& =90 .
\end{aligned}
$$

Subspaces

Describe, geometrically, all subspaces of \mathbb{R}^{3}.
All lines and planes that pass through the origin, but also $\{(0,0,0)\}$ and \mathbb{R}^{3}.

Which of the following are subspaces of the space of 2×2 matrices? Justify your answers:

1. $\left\{A: A=-A^{T}\right\}:$ Yes. $A+B=-(A+B)^{T}$ and $c A=-c A^{T}$
2. $\left\{A: A^{2}=I\right\}:$ No: $I^{2}=I$ but $(I+I)^{2} \neq I$.

Derivative

Let V be the set of all infinitely differentiable functions on \mathbb{R}, and let $D: V \rightarrow V$ be the derivative operator (i.e. $D(f)=f^{\prime}$).

1. Is D a linear tranformation? Justify your answer.

Yup! $(c f+g)^{\prime}=c f^{\prime}+g^{\prime}$ for any $c \in \mathbb{R}, f, g \in V$.
2. Which of the following are subspaces?
(a) $\{f: D(f)=0\}$: yes
(b) $\{f: D(f)=1\}$: no
(c) $\{f: D(f)=a x+b, a, b, \in \mathbb{R}\}:$ yes
3. What is the kernel of D ? All constant functions.
4. Let \mathbb{P}_{2} be the set of degree 2 polynomials, and represent the polynomial $a_{2} x^{2}+a_{1} x+a_{0}\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2}\end{array}\right]$. What is the matrix representation of D ?

$$
D=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

5. What would this look like if we tried it for the space of all polynomials?

Infinitely large matrix with $1,2,3, \ldots$ on the first superdiagonal? Does this even make sense?

If $A=\left[\begin{array}{ccccc}1 & 3 & -4 & -3 & 1 \\ 0 & 1 & -3 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$, what $\operatorname{are} \operatorname{Col}(\mathrm{A})$ and $\operatorname{Nul}(\mathrm{A}) ?$

$$
\begin{gathered}
\operatorname{Col}(A)=\left\{\left[\begin{array}{l}
s \\
t \\
0
\end{array}\right]: s, t \in \mathbb{R}\right\} . \\
\operatorname{Nul}(A)=\left\{\left[\begin{array}{c}
-5 u+6 v-w \\
3 u-v \\
u \\
v \\
w
\end{array}\right]: u, v, w \in \mathbb{R}\right\}=\operatorname{Span}\left(\left[\begin{array}{c}
-5 \\
3 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
6 \\
-1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right)
\end{gathered}
$$

If A and B are matrices, what is the relation between $\operatorname{Col}(\mathrm{A})$ and $\operatorname{Col}(\mathrm{AB})$? What about $\operatorname{Nul}(\mathrm{B})$ and $\operatorname{Nul}(\mathrm{AB})$?
$\operatorname{Col}(A B) \subset \operatorname{Col}(A)$ and $N u l(B) \subset N u l(A B)$. All of these sets are subspaces.

