1.9,2.1: Linear Transformations, Matrix Algebra
 Tuesday, September 6

More Logic

The negation of a statment is true if and only if that statement is false. For example, the negation of "All ravens are black" is "There exists a raven that is not black." Negate the following statements:

1. All roses are either red or white.
2. If a bird is black, then that bird is a raven.
3. There exist animals that have wings but cannot fly.
4. If x is positive then $x^{2}-3 x+1$ is also positive.
5. If $A B=0$ then $A=0$ or $B=0$.

Bonus warmup question: what is $\sum_{i=1}^{2} \sum_{j=1}^{2} 2^{i-j}$?

Find negations for the following statements. Decide whether the statements are true or false and justify your answers.

1. If T is a linear transformation and T is one-to-one, then T is onto.
2. The function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ is a linear transformation.
3. The function $g: \mathbb{R} \rightarrow \mathbb{R}$ given by $g(x)=e^{x}-3$ is onto.

State the negations of the following statements, and find counterexamples with 2×2 matrices: "For all matrices A and B..."

- $A B=B A$. (Hint: try a shear and a reflection or rotation)
- If $A \neq 0$ and $A B=A C$, then $B=C$
- If $A B=0$ then $A=0$ or $B=0$.

Linear Transformations

If $f(x)=m x+b$, for what values of m and b is f a linear transformation? When it is linear, express its standard matrix representation in terms of m and b.

If $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$, illustrate the effect of A on the standard basis vectors \mathbf{e}_{1} and \mathbf{e}_{2}. Find A^{2}, A^{3}, and A^{4}, and describe the associate linear transformations.

If $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$, what is A^{n} ? Describe the geometric effect of applying A to a vector repeatedly. Find a matrix B such that $A B=I$.

If $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$, find all possible combinations of products of A and B and illustrate their effects on the letter "R"

