1.9,2.1: Linear Transformations, Matrix Algebra
 Tuesday, September 6

More Logic

The negation of a statment is true if and only if that statement is false. For example, the negation of "All ravens are black" is "There exists a raven that is not black." Negate the following statements:

1. All roses are either red or white: There exists a rose that is not red and not white.
2. If a bird is black, then that bird is a raven: There is a bird that is black but not a raven.
3. There exist animals that have wings but cannot fly: Every animal with wings can fly (For every animal, if that animal has wings then it can fly).
4. If x is positive then $x^{2}-3 x+1$ is also positive: There is a positive x such that $x^{2}-3 x+1 \leq 0$.
5. If $A B=0$ then $A=0$ or $B=0$: There exist $A, B \neq 0$ such that $A B=0$.

Bonus warmup question: what is $\sum_{i=1}^{2} \sum_{j=1}^{2} 2^{i-j}$?

$$
\sum_{i=1}^{2} \sum_{j=1}^{2} 2^{i-j}=2^{1-1}+2^{1-2}+2^{2-1}+2^{2-2}=9 / 2
$$

Find negations for the following statements. Decide whether the statements are true or false and justify your answers.

1. If T is a linear transformation and T is one-to-one, then T is onto.

Negation: There is a linear transformation T that is one-to-one but not onto.
The original statement is false: take $T(x)=(x, 0)$ as a function from \mathbb{R} to \mathbb{R}^{2}.
2. The function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ is a linear transformation.

Negation (cheap version): f is not a linear transformation.
More precisely, a linear transformation must satisfy both of the following properties:
(a) For all x and $y, T(x+y)=T(x)+T(y)$
(b) For all x and scalars $c, T(c x)=c \cdot T(x)$
f is therefore not linear if there exist x and y such that the first property is false or if there exist x and c such that the second property is false. As it turns out, both are false for $f(x)=x^{2}$:
(a) $f(3+2)=25$, but $f(3)+f(2)=9+4=13$.
(b) $f(-1 \cdot 5)=25$, but $-1 \cdot f(5)=-25$.
3. The function $g: \mathbb{R} \rightarrow \mathbb{R}$ given by $g(x)=e^{x}-3$ is onto.

Cheap negation: g is not onto.
Unpacked: g is onto if for every y there is an x such that $g(x)=y$, so g is not onto if there exists a y such that $g(x)$ is never equal to y.
To show that g is not onto, let $y=-3$. Then for any $x, g(x)=e^{x}-3>0-3=-3$, so $g(x) \neq-3$ for any x.

State the negations of the following statements, and find counterexamples with 2×2 matrices: "For all matrices A and B..."

- $A B=B A$. (Hint: try a shear and a reflection or rotation)

$$
A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], B=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

- If $A \neq 0$ and $A B=A C$, then $B=C$

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], B=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right], C=\left[\begin{array}{ll}
2 & 0 \\
0 & 5
\end{array}\right]
$$

- If $A B=0$ then $A=0$ or $B=0$.

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], B=\left[\begin{array}{ll}
0 & 0 \\
0 & 3
\end{array}\right]
$$

Linear Transformations

If $f(x)=m x+b$, for what values of m and b is f a linear transformation? When it is linear, express its standard matrix representation in terms of m and b.

If f is linear, then $f(x+y)=f(x)+f(y)$ for any x and y. This implies that $m(x+y)+b=(m x+b)+(m y+b)$, which in turn means that $b=0$. So b must be zero, but any value of m will do. The transformation then has the matrix representation $[m$]

If $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$, illustrate the effect of A on the standard basis vectors \mathbf{e}_{1} and \mathbf{e}_{2}. Find A^{2}, A^{3}, and A^{4}, and describe the associate linear transformations.

$$
A \mathbf{e}_{1}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], A \mathbf{e}_{2}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right]
$$

A has the effect of rotating the plane 90 degrees counterclockwise. A^{2} is rotation 180 degrees, A^{3} rotates 270 degrees, and A^{4} rotates 360 degrees, which is the same as not rotating at all! A^{4} should therefore be the identity matrix.

If $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$, what is A^{n} ? Describe the geometric effect of applying A to a vector repeatedly. Find a matrix B such that $A B=I$.

$$
A^{n}=\left[\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right], A^{-1}=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]
$$

A has a shearing effect, and A^{n} just shears by even more. A^{-1} is a matrix that shears in the opposite direction.

If $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$, find all possible combinations of products of A and B and illustrate their effects on the letter " R ".

There should only be 8 possible such products, and they correspond to all possible horizontal/vertical reflections and 90 degree rotations of the plane. These 8 products are characterized by the relations

$$
\begin{aligned}
A^{4} & =I \\
B^{2} & =I \\
A B & =B A^{3}
\end{aligned}
$$

