1.3-1.4: Vector Equations and $A x=b$
 Tuesday, August 30

Functions

Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=2 x$. What is $\{f(x): x \in \mathbb{R}\}$? Does $f(x)$ have an inverse function? If so, is its inverse defined on all of \mathbb{R} ?

Answer the same questions as above for $g(x)=x^{2}$ and $h(x)=e^{x}$.

Let's make a secret code with the encryption function $\mathrm{E}\left({ }^{\prime} \mathrm{a}^{\prime}\right)=$ ' m ', $\mathrm{E}\left({ }^{\prime} \mathrm{b}\right.$ ') $=^{\prime} \mathrm{m}^{\prime}, \ldots, \mathrm{E}\left({ }^{\prime} \mathrm{z}\right.$ " $)=$ " m ". Use it to encrypt the message "hello world". Is this a useful secret code?

If possible, find functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g:\{a, b, c\} \rightarrow\{1,2,3\}$ that are...

- 1-1 but not onto
- both
- onto but not 1-1
- neither

Vector Equations

Define $\mathbf{u}:=\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathbf{v}:=\left[\begin{array}{c}1 \\ -1\end{array}\right], \mathbf{w}:=\left[\begin{array}{c}-2 \\ 2\end{array}\right]$ for the rest of this section. Sketch the following:

- $\mathbf{u}+\mathbf{v}$
- $\mathbf{v}+\mathbf{u}$
- $\frac{1}{2} \mathbf{w}-2 \mathbf{u}$
- $\mathbf{w}+2 \mathbf{v}$
- $\operatorname{Span}(\mathbf{v}, \mathbf{w})$
- $\operatorname{Span}(\mathbf{u}, \mathbf{v})$

If we define $\mathbf{b}:=\left[\begin{array}{l}3 \\ 5\end{array}\right]$, is \mathbf{b} in $\operatorname{Span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$? What about $\operatorname{Span}(\mathbf{v}, \mathbf{w})$?

Find a vector \mathbf{y} such that the system $c_{1} \mathbf{v}+c_{2} \mathbf{w}=\mathbf{y}$ has infinitely many solutions.

A robot begins at the point $(0,0,0)$ and is capable of moving in the directions $\pm(1,1,1)$ and $\pm(-1,3,0)$. Find a point in space that the robot cannot reach.

Matrix Equations

If we define $A:=\left[\begin{array}{lll}\mathbf{u} & \mathbf{v} & \mathbf{w}\end{array}\right]$, write $\mathbf{v}+\mathbf{u}, \frac{1}{2} \mathbf{w}-2 \mathbf{u}$, and $\mathbf{w}+2 \mathbf{v}$ as matrix-vector products.

Recall that if A is an m-by-n matrix then

- $A(\mathbf{v}+\mathbf{u})=A \mathbf{v}+A \mathbf{u}$
- $A(c \mathbf{v})=c \cdot A \mathbf{v}$
for any $\mathbf{v}, \mathbf{u} \in \mathbb{R}^{n}$ and any $c \in \mathbb{R}$. Using these two facts, prove that if $A \mathbf{v}_{1}=\mathbf{w}_{1}$ and $A \mathbf{v}_{2}=\mathbf{w}_{2}$ then the system $A \mathbf{x}=3 \mathbf{w}_{1}-\mathbf{w}_{2}$ is consistent.

