1.3-1.4: Vector Equations and $A x=b$
 Tuesday, August 30

Functions

Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=2 x$. What is $\{f(x): x \in \mathbb{R}\}$? Does $f(x)$ have an inverse function? If so, is its inverse defined on all of \mathbb{R} ?
The image/range of $f(\{f(x): x \in \mathbb{R}\})$ is all of $\mathbb{R} . f^{-1}(x)=x / 2$ is an inverse function, and it is defined on all of \mathbb{R}.

Answer the same questions as above for $g(x)=x^{2}$ and $h(x)=e^{x}$.
The image/range of g is $[0, \infty)$. g does not have an inverse because it is not one-to-one: for example $g(-2)=g(2)=4$, so an inverse function would have to satisfy both $g^{-1}(4)=-2$ and $g^{-1}(4)=2$, which is impossible.
If we restrict the domain of g to be the interval $[0, \infty)$, then g is one-to-one and \sqrt{x} is a well-defined inverse. The image of h is $(0, \infty)$. h is one-to-one and $\log (x)$ is an inverse function for h, but it is only defined for real numbers on the interval $(0, \infty)$.

Let's make a secret code with the encryption function $\mathrm{E}\left({ }^{‘} \mathrm{a}^{\prime}\right)={ }^{\prime} \mathrm{m}$ ', $\mathrm{E}\left({ }^{\prime} \mathrm{b}\right.$ ') $={ }^{\prime} \mathrm{m}^{\prime}, \ldots, \mathrm{E}\left({ }^{\prime} \mathrm{z}\right.$ ' $)=$ ' m '. Use it to encrypt the message "hello world". Is this a useful secret code?
The encoded message is " mmmmm mmmmm ". This is not very useful since it is impossible to decode. Since the encryption function is not one-to-one, information is lost during the encryption process.

If possible, find functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g:\{a, b, c\} \rightarrow\{1,2,3\}$ that are...

- 1-1 but not onto: e^{x}, NONE
- onto but not 1-1: $x^{3}-x$, NONE
- both: $2 x, g(a)=1, g(b)=2, g(c)=3$
- neither: $f(x)=0, g(a)=g(b)=g(c)=1$

The lesson: for finite sets, there is a stricter relation between the size of the set and whether the function is one-to-one or onto than for infinite sets. We will see that similar patterns hold when dealing with linear functions.

Vector Equations

Define $\mathbf{u}:=\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathbf{v}:=\left[\begin{array}{c}1 \\ -1\end{array}\right], \mathbf{w}:=\left[\begin{array}{c}-2 \\ 2\end{array}\right]$ for the rest of this section. Sketch the following:

- $\mathbf{u}+\mathbf{v}$
- $\mathbf{v}+\mathbf{u}$
- $\frac{1}{2} \mathbf{w}-2 \mathbf{u}$
- $\mathbf{w}+2 \mathbf{v}$
- $\operatorname{Span}(\mathbf{v}, \mathbf{w})$: just a straight line parallel to \mathbf{v}
- $\operatorname{Span}(\mathbf{u}, \mathbf{v})$: all of \mathbb{R}^{2}

If we define $\mathbf{b}:=\left[\begin{array}{l}3 \\ 5\end{array}\right]$, is \mathbf{b} in $\operatorname{Span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$? What about $\operatorname{Span}(\mathbf{v}, \mathbf{w})$?
It is definitely true that $\mathbf{b} \in \operatorname{Span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$ because the span of these three vectors is all of \mathbb{R}^{2}, so every vector in \mathbb{R}^{2} is in the span.
\mathbf{b} is not in the span of $\{\mathbf{v}, \mathbf{w}\}$ since (geometrically) the vector \mathbf{b} does not sit on the line defined by the span (as sketched in the previous exercise). You can also reduce the augmented system [$\left.\begin{array}{lll}\mathbf{v} & \mathbf{w} & \mathbf{b}\end{array}\right]$ to echelon form to verify this fact.

Find a vector \mathbf{y} such that the system $c_{1} \mathbf{v}+c_{2} \mathbf{w}=\mathbf{y}$ has infinitely many solutions.
Any multiple of \mathbf{v} (which is also a multiple of \mathbf{w}), and only multiples of \mathbf{v}, will have infinitely many solutions. To prove this first part: you can check that $\mathbf{w}=-2 \mathbf{v}$, so if $\mathbf{y}=\alpha \mathbf{v}$, it follows that for any $t \in \mathbb{R}$, we will have $t \mathbf{w}+(2 t+\alpha) \mathbf{v}=-2 t \mathbf{v}+2 \mathbf{v}+\alpha \mathbf{v}=\alpha \mathbf{v}=\mathbf{y}$.
You can also reduce the augmented system $\left[\begin{array}{lll}\mathbf{v} & \mathbf{w} & \mathbf{y}\end{array}\right]$ to echelon form and verify that there is a free variable.

A robot begins at the point $(0,0,0)$ and is capable of moving in the directions $\pm(1,1,1)$ and $\pm(-1,3,0)$. Find a point in space that the robot cannot reach.
To find all points that the robot cannot reach, we can try to see whether an arbitrary point $[x, y, z]$ is in the span of the vectors $(1,1,1)$ and $(-1,3,0)$:

$$
\begin{aligned}
{\left[\begin{array}{ccc}
1 & -1 & x \\
1 & 3 & y \\
1 & 0 & z
\end{array}\right] } & \sim\left[\begin{array}{ccc}
1 & -1 & x \\
0 & 4 & y-x \\
0 & 1 & z-x
\end{array}\right] \\
& \sim\left[\begin{array}{ccc}
1 & -1 & x \\
0 & 1 & z-x \\
0 & 4 & y-x
\end{array}\right] \\
& \sim\left[\begin{array}{ccc}
1 & -1 & x \\
0 & 1 & z-x \\
0 & 0 & (y-x)-4(z-x)
\end{array}\right] .
\end{aligned}
$$

The system is therefore consistent if and only if $y+3 x-4 z=0$, and any other vector will be out of the robot's reach. Thus, for example, the robot cannot reach the point $(1,0,0)$.
To be honest, pretty much any "random" guess would have worked. This is because the span of the robot's direction vectors forms a plane, but planes take up very little of 3-dimensional space (i.e. they have zero volume).

Matrix Equations

If we define $A:=\left[\begin{array}{lll}\mathbf{u} & \mathbf{v} & \mathbf{w}\end{array}\right]$, write $\mathbf{v}+\mathbf{u}, \frac{1}{2} \mathbf{w}-2 \mathbf{u}$, and $\mathbf{w}+2 \mathbf{v}$ as matrix-vector products. $A\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], A\left[\begin{array}{c}-2 \\ 0 \\ -1 / 2\end{array}\right]$, and $A\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]$ are the correct matrix-vector products.

Recall that if A is an m-by-n matrix then

- $A(\mathbf{v}+\mathbf{u})=A \mathbf{v}+A \mathbf{u}$
- $A(c \mathbf{v})=c \cdot A \mathbf{v}$
for any $\mathbf{v}, \mathbf{u} \in \mathbb{R}^{n}$ and any $c \in \mathbb{R}$. Using these two facts, prove that if $A \mathbf{v}_{1}=\mathbf{w}_{1}$ and $A \mathbf{v}_{2}=\mathbf{w}_{2}$ then the system $A \mathbf{x}=3 \mathbf{w}_{1}-\mathbf{w}_{2}$ is consistent.
Let $\mathbf{x}=3 \mathbf{v}_{1}-\mathbf{v}_{2}$. Then $A \mathbf{x}=A\left(3 \mathbf{v}_{1}-\mathbf{v}_{2}\right)=A\left(3 \mathbf{v}_{1}\right)+A\left(-\mathbf{v}_{2}\right)=3 A \mathbf{v}_{1}-A \mathbf{v}_{2}=3 \mathbf{w}_{1}-\mathbf{w}_{2}$. This shows that the system is consistent. Note: this was covered in more depth in Thursday's discussion.

