10.2-10.3: Fourier Series and the Heat Equation
 Tuesday, November 29

Heat Equation

Given the equations

1. $u_{t}=\beta u_{x x}$ for $0<x<L$ and $t>0$,
2. $u(0, t)=u(L, t)=0$ for $t>0$, and
3. $u(x, 0)=f(x)$ for $0<x<L$,
the solution has the form

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-\beta(n \pi / L)^{2} t} \sin \frac{n \pi x}{L}
$$

where

$$
f(x)=\sum_{n=1}^{\infty} c_{n} \sin \frac{n \pi x}{L}
$$

1. Verify that any function of the form $u(x, t)=e^{-\beta(n \pi / L)^{2} t} \sin \frac{n \pi x}{L}$ satisfies the first two conditions. How does this function behave as $t \rightarrow \infty$?
2. Solve the heat flow problem with $\beta=3, L=\pi$, and $f(x)=\sin x-6 \sin 4 x$.

Sawtooth Wave

Define the function f on the interval $[0,2 \pi]$ by $f(x)=x-\pi$. Sketch the 2π-periodic extension of f, and find its Fourier series.

Legendre Polynomials

Consider the Legendre polynomials $P_{0}(x)=1, P_{1}(x)=x, P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2}$, which are orthogonal on the interval $[-1,1]$. Find the "best" degree-2 approximation to $f(x)=\cos \left(\frac{\pi x}{2}\right)$ on this interval. How does it compare to the Taylor series?

