10.2-10.3: Fourier Series and the Heat Equation
 Tuesday, November 29

Heat Equation

Given the equations

1. $u_{t}=\beta u_{x x}$ for $0<x<L$ and $t>0$,
2. $u(0, t)=u(L, t)=0$ for $t>0$, and
3. $u(x, 0)=f(x)$ for $0<x<L$,
the solution has the form

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-\beta(n \pi / L)^{2} t} \sin \frac{n \pi x}{L}
$$

where

$$
f(x)=\sum_{n=1}^{\infty} c_{n} \sin \frac{n \pi x}{L}
$$

1. Verify that any function of the form $u(x, t)=e^{-\beta(n \pi / L)^{2} t} \sin \frac{n \pi x}{L}$ satisfies the first two conditions. How does this function behave as $t \rightarrow \infty$?

ANSWER: since n is an integer, $\sin \frac{n \pi x}{L}=\sin n \pi=0$ when $x=L$ and $\sin \frac{n \pi x}{L}=\sin 0=0$ when $x=0$.
Thus the boundary condition is satisfied.
As for the diffusion rate,

$$
\begin{aligned}
u_{t} & =-\beta(n \pi / L)^{2} u(x, t) \\
u_{x x} & =-(n \pi / L)^{2} u(x, t) \\
u_{t} & =\beta u_{x x} .
\end{aligned}
$$

The given function $u(x, t)$ is therefore a solution to the heat equation.
2. Solve the heat flow problem with $\beta=3, L=\pi$, and $f(x)=\sin x-6 \sin 4 x$.

ANSWER:
$u(x, t)=e^{-3 t} \sin x-6 e^{-48 t} \sin 4 x$.

Sawtooth Wave

Define the function f on the interval $[0,2 \pi]$ by $f(x)=x-\pi$. Sketch the 2π-periodic extension of f, and find its Fourier series.
ANSWER: Since $f(x)$ is odd, we only need to look at the terms of the form $\sin (n x)$.

$$
\begin{aligned}
c_{n} & =\langle f(x), \sin n x\rangle \\
& =\frac{1}{\pi} \int_{0}^{2 \pi}(x-\pi) \sin n x d x \\
& =\frac{1}{\pi}\left[\frac{-1}{n} x \cos n x+\frac{1}{n^{2}} \sin n x+\frac{\pi}{n} \cos n x\right]_{0}^{2 \pi} \\
& =\frac{-2}{n} .
\end{aligned}
$$

Therefore, the Fourier series of $f(x)$ is $\sum_{n=1}^{\infty} \frac{-2}{n} \sin n x$.

Legendre Polynomials

Consider the Legendre polynomials $P_{0}(x)=1, P_{1}(x)=x, P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2}$, which are orthogonal on the interval $[-1,1]$. Find the "best" degree-2 approximation to $f(x)=\cos \left(\frac{\pi x}{2}\right)$ on this interval. How does it compare to the Taylor series?
First note that $\left\|P_{0}\right\|^{2}=2$ and $\left\|P_{2}\right\|^{2}=\frac{5}{2}$, so we have to divide by these norms when computing c_{0} and c_{2}.

$$
\begin{aligned}
c_{0} & =\frac{1}{2} \int_{-1}^{1} \cos \frac{\pi x}{2} d x \\
& =\frac{1}{\pi}\left[\sin \frac{\pi x}{2}\right]_{-1}^{1} \\
& =\frac{2}{\pi}
\end{aligned}
$$

Since x is odd and $\cos x$ is even and the integral is symmetric about zero, $c_{1}=0$. Finally,

$$
\begin{aligned}
c_{2} & =\frac{5}{2} \int_{-1}^{1}\left(\frac{3}{2} x^{2}-\frac{1}{2}\right) \cos \frac{\pi x}{2} d x \\
& =\frac{10}{\pi}-\frac{120}{\pi^{3}} .
\end{aligned}
$$

The best degree-2 approximation to $f(x)$ on this interval is therefore $p(x)=\left(\frac{10}{\pi}-\frac{120}{\pi^{3}}\right)\left(\frac{3}{2} x^{2}-\frac{1}{2}\right)+\frac{2}{\pi}$. [Doing the computation isn't the most important part here; it's fine to use a computer to compute the integrals.] A graph of both functions as well as the Taylor series for $f(x)$ is shown below. $f(x)$ is in black, $p(x)$ is in red, and the Taylor series is in green:

The Taylor series is a better approximation (in fact, the best approximation) at $x=0$, but $p(x)$ is much better at the boundary of the interval. If we were to shrink the interval toward zero, then the best approximation $p(x)$ on the interval would converge to the Taylor series.

