9.7-9.8: Nonhomogeneous systems, Matrix exponentials $_{\text{Tuesday, November } 22}$

Variation of Parameters

$$\mathbf{x}(t) = \mathbf{X}(t)\mathbf{c} + \mathbf{X}(t) \int \mathbf{X}^{-1}(s)\mathbf{f}(s) \, ds$$

Use the method of variaton of parameters given above to find a particular solution of the system

$$\mathbf{x}'(t) = \begin{bmatrix} 2 & 1 \\ -3 & -2 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 2e^t \\ 4e^t \end{bmatrix}.$$

Also solve the problem using the method of undetermined coefficients. Which is simpler?

Use the method of undetermined coefficients to find a particular solution to the system

$$\mathbf{x}'(t) = \begin{bmatrix} 0 & 1 \\ -2 & 3 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} \sin t \\ \cos t + \sin t \end{bmatrix}.$$

The Matrix Exponential: Recap

- e^{At} is a fundamental matrix for the system $\mathbf{x}'(t) = \mathbf{A}\mathbf{x}(t)$.
- If X(t) is a fundamental matrix then $e^{At} = X(t)X(0)^{-1}$.
- If $A = V\Lambda V^{-1}$ then $e^A = Ve^{\Lambda}V^{-1}$.

Find e^{At} , where $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$.

If $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, what are the eigenvectors of A and B? Find formulas for A^n and B^n . What are e^A and e^B ?