9.7-9.8: Nonhomogeneous systems, Matrix exponentials
 Tuesday, November 22

Variation of Parameters

$$
\mathbf{x}(t)=\mathbf{X}(t) \mathbf{c}+\mathbf{X}(t) \int \mathbf{X}^{-1}(s) \mathbf{f}(s) d s
$$

Use the method of variaton of parameters given above to find a particular solution of the system

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{cc}
2 & 1 \\
-3 & -2
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{c}
2 e^{t} \\
4 e^{t}
\end{array}\right]
$$

Also solve the problem using the method of undetermined coefficients. Which is simpler?

Use the method of undetermined coefficients to find a particular solution to the system

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{cc}
0 & 1 \\
-2 & 3
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{c}
\sin t \\
\cos t+\sin t
\end{array}\right]
$$

The Matrix Exponential: Recap

- $e^{A t}$ is a fundamental matrix for the system $\mathbf{x}^{\prime}(t)=\mathbf{A} \mathbf{x}(t)$.
- If $X(t)$ is a fundamental matrix then $e^{A t}=X(t) X(0)^{-1}$.
- If $A=V \Lambda V^{-1}$ then $e^{A}=V e^{\Lambda} V^{-1}$.

Find $e^{A t}$, where $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$.

If $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$, what are the eigenvectors of A and B ? Find formulas for A^{n} and B^{n}. What are e^{A} and e^{B} ?

