9.7-9.8: Nonhomogeneous systems, Matrix exponentials

Tuesday, November 22

Variation of Parameters

$$
\mathbf{x}(t)=\mathbf{X}(t) \mathbf{c}+\mathbf{X}(t) \int \mathbf{X}^{-1}(s) \mathbf{f}(s) d s
$$

Use the method of variaton of parameters given above to find a particular solution of the system

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{cc}
2 & 1 \\
-3 & -2
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{c}
2 e^{t} \\
4 e^{t}
\end{array}\right] .
$$

Also solve the problem using the method of undetermined coefficients. Which is simpler?
ANSWER: The matrix A has eigenvalues ± 1 with eigenvectors $v_{1}=(-1,3)$ and $v_{2}=(-1,1)$, so a fundamental matrix is $\mathbf{X}(t)=\left[\begin{array}{cc}-e^{-t} & -e^{t} \\ 3 e^{-t} & e^{t}\end{array}\right]$, with

$$
\mathbf{X}^{-1}(t)=\frac{1}{2}\left[\begin{array}{cc}
e^{t} & e^{t} \\
-3 e^{-t} & -e^{-t}
\end{array}\right]
$$

Therefore, a particular solution is given by

$$
\begin{aligned}
\mathbf{X}(t) \int \mathbf{X}^{-1}(s) \mathbf{f}(s) d s & =\mathbf{X}(t) \int \frac{1}{2}\left[\begin{array}{cc}
e^{s} & e^{s} \\
-3 e^{-s} & -e^{-s}
\end{array}\right]\left[\begin{array}{l}
2 e^{s} \\
4 e^{s}
\end{array}\right] d s \\
& =\mathbf{X}(t) \int\left[\begin{array}{c}
3 e^{2 s} \\
-5
\end{array}\right] d s \\
& =\left[\begin{array}{cc}
-e^{-t} & -e^{t} \\
3 e^{-t} & e^{t}
\end{array}\right]\left[\begin{array}{c}
\frac{3}{2} e^{2 t} \\
-5 t
\end{array}\right] \\
& =\left[\begin{array}{c}
5 t e^{t}-\frac{3}{2} e^{t} \\
\frac{9}{2} e^{t}-5 t e^{t}
\end{array}\right]
\end{aligned}
$$

ANSWER 2: Notice that the fundamental matrix contains a solution of the form $e^{t} \mathbf{a}(t)$, so for undetermined coefficients we have to go one step further, and guess

$$
\mathbf{x}(t)=\left[\begin{array}{l}
a t e^{t}+b e^{t} \\
c t e^{t}+d e^{t}
\end{array}\right]
$$

in which case we get the system

$$
\begin{aligned}
{\left[\begin{array}{l}
a t e^{t}+(a+b) e^{t} \\
c t e^{t}+(c+d) e^{t}
\end{array}\right] } & =\left[\begin{array}{c}
(2 a+c) t e^{t}+(2 b+d) e^{t} \\
(-3 a-2 c) t e^{t}+(-3 b-d) e^{t}
\end{array}\right]+\left[\begin{array}{l}
2 e^{t} \\
4 e^{t}
\end{array}\right] \\
{\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
-1 & 1 & 0 & 1 \\
-3 & 0 & -3 & 0 \\
0 & -3 & -1 & -3
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right] } & =\left[\begin{array}{c}
0 \\
-2 \\
0 \\
-4
\end{array}\right] \\
{\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & -3 & -1 & -3
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right] } & =\left[\begin{array}{c}
0 \\
-2 \\
0 \\
-4
\end{array}\right] \\
{\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 2 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right] } & =\left[\begin{array}{c}
0 \\
-2 \\
-10
\end{array}\right]
\end{aligned}
$$

which gives the set of solutions $a=5, c=-5, b+d=3$. Any such choice of b and d will do, and a look at the solution given by variation of parameters can note that $b=-3 / 2, d=9 / 2$ does work.

Use the method of undetermined coefficients to find a particular solution to the system

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{cc}
0 & 1 \\
-2 & 3
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{c}
\sin t \\
\cos t+\sin t
\end{array}\right]
$$

ANSWER: guess a solution of the form

$$
\mathbf{x}(t)=\left[\begin{array}{l}
a \cos t+b \sin t \\
c \cos t+d \sin t
\end{array}\right]
$$

in which case we get the problem

$$
\left[\begin{array}{l}
b \cos t-a \sin t \\
d \cos t-c \sin t
\end{array}\right]=\left[\begin{array}{c}
c \cos t+d \sin t \\
(3 c-2 a) \cos t+(3 d-2 b) \sin t
\end{array}\right]+\left[\begin{array}{c}
\sin t \\
\cos t+\sin t
\end{array}\right],
$$

which can be turned into the linear system of equations

$$
\left[\begin{array}{cccc}
0 & 1 & -1 & 0 \\
-1 & 0 & 0 & -1 \\
2 & 0 & -3 & 1 \\
0 & 2 & -1 & -3
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]
$$

which gives the solution $(a, b, c, d)=\left(-\frac{2}{5},-\frac{4}{5},-\frac{4}{5},-\frac{3}{5}\right)$, or $\mathbf{x}(t)=\left[\begin{array}{c}-\frac{2}{5} \cos t-\frac{4}{5} \sin t \\ -\frac{4}{5} \cos t-\frac{3}{5} \sin t\end{array}\right]$.

The Matrix Exponential: Recap

- $e^{A t}$ is a fundamental matrix for the system $\mathbf{x}^{\prime}(t)=\mathbf{A} \mathbf{x}(t)$.
- If $X(t)$ is a fundamental matrix then $e^{A t}=X(t) X(0)^{-1}$.
- If $A=V \Lambda V^{-1}$ then $e^{A}=V e^{\Lambda} V^{-1}$.

Find $e^{A t}$, where $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$.
ANSWER: We can find the eigenvalue/eigenvector factorization

$$
A=V \Lambda V^{-1}=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

so

$$
e^{A}=V e^{\Lambda} V^{-1}=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
e & 0 \\
0 & e^{3}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{ll}
e+e^{3} & e-e^{3} \\
e-e^{3} & e+e^{3}
\end{array}\right] .
$$

If $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$, what are the eigenvectors of A and B ? Find formulas for A^{n} and B^{n}. What are e^{A} and e^{B} ?
ANSWER: A and B both have 1 as their only eigenvalue and \mathbf{e}_{1} as their only eigenvector. $A^{n}=\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right]$ and $B^{n}=\left[\begin{array}{ccc}1 & n & \left(n^{2}-n\right) / 2 \\ 0 & 1 & n \\ 0 & 0 & 1\end{array}\right]$.
To find e^{A}, split A as $A=I+N$ where $N=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ (so that $N^{2}=0$). Then $e^{A}=e^{I+N}=e^{I} e^{N}=$ $e \cdot(I+N)=\left[\begin{array}{ll}e & e \\ 0 & e\end{array}\right]$. Similarly, $B=\left[\begin{array}{ccc}e & e & e / 2 \\ 0 & e & e \\ 0 & 0 & e\end{array}\right]$.

