9.5: Homogeneous Linear Systems Tuesday, November 15

Recap

If an $n \times n$ matrix **A** has *n* linearly independent eigenvectors $\mathbf{u}_1, \ldots, \mathbf{u}_n$, then $\{e^{\lambda_1 t} \mathbf{u}_1, \ldots, e^{\lambda_n t} \mathbf{u}_n\}$ is a fundamental solution set for the homogeneous system $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

Practice Problems

- 1. If $A = \begin{bmatrix} 1 & 3 \\ 12 & 1 \end{bmatrix}$, find the general solution to $\mathbf{x}' = \mathbf{A}\mathbf{x}$.
- 2. If we make the interpretation $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$, sketch a direction field for the differential equation.
- 3. If a particle starts at the point (-1,2), sketch the trajectory of the solution. What happens to the particle as $t \to \infty$?
- 4. If a particle starts at (-1, 1,), sketch the trajectory of the solution. What happens to the particle as $t \to \infty$?
- 5. If you have time/space, do the same with $\mathbf{A} = \begin{bmatrix} -1 & \frac{3}{4} \\ -5 & 3 \end{bmatrix}$.

For the first matrix given, the eigenvalues are $\lambda = -5, 7$ with eigenvectors (1, -2) and (1, 2), representively. If the particle starts on the line y = -2x, it will therefore approach the origin as $t \to \infty$. If it begins everywhere else, it will move away from the origin and gradually approach the line y = 2x, the path corresponding to the eigenvector with eigenvalue 7.

Simple Harmonic Oscillator

Say we have an object with mass m = 1 attached to a spring with stiffness k = 1 in a frictionless system. Then we can derive the system of equations

$$\begin{bmatrix} x(t) \\ v(t) \end{bmatrix}' = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ v(t) \end{bmatrix}$$

- 1. Find the eigenvalues and eigenvectors of A.
- 2. Sketch a direction field for the system of differential equations.
- 3. Find the general solution to the system.
- 4. Find the specific solution given the initial conditions x(0) = 2, v(0) = 0.
- 5. If the object has kinetic energy $\frac{1}{2}mv^2$ and potential energy $\frac{1}{2}kx^2$, show that the total energy of the system is constant. Does this hold in a system with friction? How can you interpret this result geometrically with respect to the direction field?

The specific solution is $x(t) = 2 \cos t$, $v(t) = -2 \sin t$. The direction field consists of concentric circles going clockwise around the origin. Since $\frac{1}{2}mv^2 + \frac{1}{2}kx^2$ is a constant for any starting x(0) and v(0), this system always conserves energy. If there is friction, it does not.