9.5: Homogeneous Linear Systems

Tuesday, November 15

Recap

If an $n \times n$ matrix \mathbf{A} has n linearly independent eigenvectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$, then $\left\{e^{\lambda_{1} t} \mathbf{u}_{1}, \ldots, e^{\lambda_{n} t} \mathbf{u}_{n}\right\}$ is a fundamental solution set for the homogeneous system $\mathbf{x}^{\prime}=\mathbf{A x}$.

Practice Problems

1. If $A=\left[\begin{array}{cc}1 & 3 \\ 12 & 1\end{array}\right]$, find the general solution to $\mathbf{x}^{\prime}=\mathbf{A x}$.
2. If we make the interpretation $\mathbf{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$, sketch a direction field for the differential equation.
3. If a particle starts at the point $(-1,2)$, sketch the trajectory of the solution. What happens to the particle as $t \rightarrow \infty$?
4. If a particle starts at $(-1,1$,$) , sketch the trajectory of the solution. What happens to the particle as$ $t \rightarrow \infty$?
5. If you have time/space, do the same with $\mathbf{A}=\left[\begin{array}{ll}-1 & \frac{3}{4} \\ -5 & 3\end{array}\right]$.

For the first matrix given, the eigenvalues are $\lambda=-5,7$ with eigenvectors $(1,-2)$ and $(1,2)$, repsectively. If the particle starts on the line $y=-2 x$, it will therefore approach the origin as $t \rightarrow \infty$. If it begins everywhere else, it will move away from the origin and gradually approach the line $y=2 x$, the path corresponding to the eigenvector with eigenvalue 7 .

Simple Harmonic Oscillator

Say we have an object with mass $m=1$ attached to a spring with stiffness $k=1$ in a frictionless system. Then we can derive the system of equations

$$
\left[\begin{array}{l}
x(t) \\
v(t)
\end{array}\right]^{\prime}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
x(t) \\
v(t)
\end{array}\right]
$$

1. Find the eigenvalues and eigenvectors of A.
2. Sketch a direction field for the system of differential equations.
3. Find the general solution to the system.
4. Find the specific solution given the intitial conditions $x(0)=2, v(0)=0$.
5. If the object has kinetic energy $\frac{1}{2} m v^{2}$ and potential energy $\frac{1}{2} k x^{2}$, show that the total energy of the system is constant. Does this hold in a system with friction? How can you interpret this result geometrically with respect to the direction field?

The specific solution is $x(t)=2 \cos t, v(t)=-2 \sin t$. The direction field consists of concentric circles going clockwise around the origin. Since $\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}$ is a constant for any starting $x(0)$ and $v(0)$, this system always conserves energy. If there is friction, it does not.

