9.6-9.7: Complex Eigenvalues, Variation of Parameters
 Thursday, November 17

Recap

If a real matrix A has complex eigenvectors $\mathbf{x} \pm i \mathbf{y}$ with complex eigenvalues $\alpha \pm i \beta$, then two real solutions to the system $\mathbf{x}^{\prime}=A \mathbf{x}$ are $\mathbf{x}_{1}(t)=e^{\alpha t} \cos \beta t \mathbf{x}-e^{\alpha t} \sin \beta t \mathbf{y}$ and $\mathbf{x}_{2}(t)=e^{\alpha t} \sin \beta t \mathbf{x}+e^{\alpha t} \cos \beta t \mathbf{y}$.

Coupled Mass-Spring System

Say we have the coupled mass-spring system governed by the equations

$$
\begin{aligned}
& m_{1} x_{1}^{\prime \prime}=-k_{1} x_{1}+k_{2}\left(x_{2}-x_{1}\right) \\
& m_{2} x_{2}^{\prime \prime}=-k_{2}\left(x_{2}-x_{1}\right)-k_{3} x_{2}
\end{aligned}
$$

with $m_{1}=m_{2}=1 \mathrm{~kg}, k_{1}=k_{2}=2 \mathrm{~N} / \mathrm{m}$, and $k_{3}=3 \mathrm{~N} / \mathrm{m}$. Determine the normal frequencies for this coupled mass-spring system.

Variation of Parameters

$$
\mathbf{x}(t)=\mathbf{X}(t) \mathbf{c}+\mathbf{X}(t) \int \mathbf{X}^{-1}(s) \mathbf{f}(s) d s
$$

Use the method of variaton of parameters given above to find a general solution of the system

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{cc}
2 & 1 \\
-3 & -2
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{c}
2 e^{t} \\
4 e^{t}
\end{array}\right] .
$$

Complex Eigenvalues

Suppose that the real matrix A has a complex eigenvalue $\mathbf{v}=\mathbf{x}+i \mathbf{y}$ with complex eigenvector $\lambda=\alpha+i \beta$.

1. Compare real and imaginary parts to show that $A x=\alpha x-\beta y$ and $A y=\beta x+\alpha y$.
2. Show that $A\left[\begin{array}{ll}\mathbf{x} & \mathbf{y}\end{array}\right]=\left[\begin{array}{ll}\mathbf{x} & \mathbf{y}\end{array}\right]\left[\begin{array}{cc}\alpha & \beta \\ -\beta & \alpha\end{array}\right]$.
3. Find the eigenvalues and eigenvectors of the matrix $\left[\begin{array}{cc}\alpha & \beta \\ -\beta & \alpha\end{array}\right]$.
4. With respect to the basis $\mathcal{B}=\left\{e^{i t}, e^{-i t}\right\}$, what is $[D]_{\mathcal{B}}$?
5. What is $[D]_{\mathcal{C}}$ with respect to the basis $\mathcal{C}=\{\sin t, \cos t\}$?
6. What is the change of basis matrix from \mathcal{B} to \mathcal{C} ?
7. Diagonalize the matrix $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$.
