9.6-9.7: Complex Eigenvalues, Variation of Parameters
 Thursday, November 17

Recap

If a real matrix A has complex eigenvectors $\mathbf{x} \pm i \mathbf{y}$ with complex eigenvalues $\alpha \pm i \beta$, then two real solutions to the system $\mathbf{x}^{\prime}=A \mathbf{x}$ are $\mathbf{x}_{1}(t)=e^{\alpha t} \cos \beta t \mathbf{x}-e^{\alpha t} \sin \beta t \mathbf{y}$ and $\mathbf{x}_{2}(t)=e^{\alpha t} \sin \beta t \mathbf{x}+e^{\alpha t} \cos \beta t \mathbf{y}$.

Coupled Mass-Spring System

Say we have the coupled mass-spring system governed by the equations

$$
\begin{aligned}
& m_{1} x_{1}^{\prime \prime}=-k_{1} x_{1}+k_{2}\left(x_{2}-x_{1}\right) \\
& m_{2} x_{2}^{\prime \prime}=-k_{2}\left(x_{2}-x_{1}\right)-k_{3} x_{2}
\end{aligned}
$$

with $m_{1}=m_{2}=1 \mathrm{~kg}, k_{1}=k_{2}=2 \mathrm{~N} / \mathrm{m}$, and $k_{3}=3 \mathrm{~N} / \mathrm{m}$. Determine the normal frequencies for this coupled mass-spring system.
ANSWER: if we set $y_{1}=x_{1}, y_{2}=x_{1}^{\prime}, y_{3}=x_{2}, y_{4}=x_{2}^{\prime}$, then we get the system

$$
\mathbf{y}^{\prime}(t)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-4 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 \\
2 & 0 & -5 & 0
\end{array}\right] \mathbf{y}(t)
$$

This system has eigenvalues $\pm \frac{i}{2} \sqrt{9 \pm \sqrt{17}}$, so the two normal frequencies are $\frac{\sqrt{9 \pm \sqrt{17}}}{4 \pi}$ cycles per second.

Variation of Parameters

$$
\mathbf{x}(t)=\mathbf{X}(t) \mathbf{c}+\mathbf{X}(t) \int \mathbf{X}^{-1}(s) \mathbf{f}(s) d s
$$

Use the method of variaton of parameters given above to find a general solution of the system

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{cc}
2 & 1 \\
-3 & -2
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{c}
2 e^{t} \\
4 e^{t}
\end{array}\right]
$$

ANSWER: The matrix A has eigenvalues ± 1 with eigenvectors $v_{1}=(1,-3)$ and $v_{2}=(1,-1)$, so a fundamental matrix is $\mathbf{X}(t)=\left[\begin{array}{cc}e^{-t} & e^{t} \\ -3 e^{-t} & -e^{t}\end{array}\right]$, with

$$
\mathbf{X}^{-1}(t)=\frac{1}{2}\left[\begin{array}{cc}
-e^{t} & -e^{t} \\
3 e^{-t} & e^{-t}
\end{array}\right]
$$

Therefore,

$$
\begin{aligned}
\mathbf{X}(t) \int \mathbf{X}^{-1}(s) \mathbf{f}(s) d s & =\mathbf{X}(t) \int \frac{1}{2}\left[\begin{array}{cc}
-e^{t} & -e^{t} \\
3 e^{-t} & e^{-t}
\end{array}\right]\left[\begin{array}{c}
2 e^{t} \\
4 e^{t}
\end{array}\right] d s \\
& =\mathbf{X}(t) \int\left[\begin{array}{c}
-3 e^{2 t} \\
5
\end{array}\right] \\
& =\mathbf{X}(t)\left[\begin{array}{c}
-\frac{3}{2} e^{2 t} \\
5 t
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{3}{2} e^{t}+5 t e^{t} \\
\frac{9}{2} e^{t}+5 t e^{t}
\end{array}\right]
\end{aligned}
$$

Well, that was painful. Maybe try using undetermined coefficients next time instead.

Complex Eigenvalues

Suppose that the real matrix A has a complex eigenvalue $\mathbf{v}=\mathbf{x}+i \mathbf{y}$ with complex eigenvector $\lambda=\alpha+i \beta$.

1. Compare real and imaginary parts to show that $A x=\alpha x-\beta y$ and $A y=\beta x+\alpha y$.

ANSWER: $A(\mathbf{x}+i \mathbf{y})=(\alpha+i \beta)(\mathbf{x}+i \mathbf{y})=(\alpha x-\beta y)+i(\beta x+\alpha y)$, so the real and imaginary parts of both sides must be equal.
2. Show that $A\left[\begin{array}{ll}\mathbf{x} & \mathbf{y}\end{array}\right]=\left[\begin{array}{ll}\mathbf{x} & \mathbf{y}\end{array}\right]\left[\begin{array}{cc}\alpha & \beta \\ -\beta & \alpha\end{array}\right]$.

ANSWER: Follows immediately from the previous answer by stacking the vectors.
3. Find the eigenvalues and eigenvectors of the matrix $\left[\begin{array}{cc}\alpha & \beta \\ -\beta & \alpha\end{array}\right]$.

ANSWER: The matrix has eigenvalues $\alpha \pm i \beta$, with eigenvectors $(1, i)^{T}$ and $(1,-i)^{T}$, respectively.
4. With respect to the basis $\mathcal{B}=\left\{e^{i t}, e^{-i t}\right\}$, what is $[D]_{\mathcal{B}}$?

ANSWER: $[D]_{\mathcal{B}}=\left[\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right]$.
5. What is $[D]_{\mathcal{C}}$ with respect to the basis $\mathcal{C}=\{\sin t, \cos t\}$?

ANSWER: $[D]_{\mathcal{C}}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
6. What is the change of basis matrix from \mathcal{B} to \mathcal{C} ?

ANSWER:

$$
\left[\begin{array}{c}
e^{i t} \\
e^{-i t}
\end{array}\right]=\left[\begin{array}{l}
\cos t+i \sin t \\
\cos t-i \sin t
\end{array}\right]=\left[\begin{array}{cc}
1 & i \\
1 & -i
\end{array}\right]\left[\begin{array}{c}
\cos t \\
\sin t
\end{array}\right]
$$

so the change of basis matrix is $P_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{cc}1 & 1 \\ i & -i\end{array}\right]$.
7. Diagonalize the matrix $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$.

ANSWER:

$$
\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
i & -i
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
i & -i
\end{array}\right]\left[\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right] .
$$

