4.6: Variation of Parameters

Tuesday, November 8

Recap

Suppose we want to solve $a y^{\prime \prime}+b y^{\prime}+c y=f$:

1. Find linearly independent solutions y_{1}, y_{2} to the homogeneous equation.
2. Look for a solution of the form $y=v_{1} y_{1}+v_{2} y_{2}$.
3. Add the constraint $v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2}=0$. This gives the system

$$
\left[\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right]\left[\begin{array}{l}
v_{1}^{\prime} \\
v_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
0 \\
f / a
\end{array}\right]
$$

4. Since y_{1} and y_{2} are LI, the Wronskian $W(t)=\left(y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right)$ is always nonzero. Solve the system and integrate to get

$$
\begin{aligned}
& v_{1}(t)=\int \frac{-f(t) y_{2}(t)}{a W(t)}+c_{1} \\
& v_{2}(t)=\int \frac{f(t) y_{1}(t)}{a W(t)}+c_{2}
\end{aligned}
$$

5. Note that this will be a solution for any constants c_{1} and c_{2}.

Practice Problems

Solve the following problems first by using undetermined coefficients, and then by variation of parameters. Which method was quicker?

1. $y^{\prime \prime}-y=2 t+4$:

ANSWER: guess $y=A t+B$, get $y=-2 t-4$. Very easy!
Variation of parameters involves $y_{1}=e^{t}, y_{2}=e^{-t}$.
2. $y^{\prime \prime}-2 y^{\prime}-4 y=2 e^{2 t}$

ANSWER: Guess an equation of the form $y=A e^{2 t}$ and get $4 A-4 A-4 A=2$, or $A=-\frac{1}{2}$. Not too bad!
Variation of parameters is a good bit harder.

Find a general solution to the differential equation $y^{\prime \prime}+y=\sec t$ using variation of parameters.
ANSWER: if we use the independent solutions $y_{1}=\sin t, y_{2}=\cos t$, then the Wronskian is a constant -1 .

Linear Independence of Functions

Show that the functions $p_{1}=t, p_{2}=t^{2}$, and $p_{3}=1-t^{2}$ are linearly independent by finding a set of three points $\left\{x_{1}, x_{2}, x_{3}\right\} \subset \mathbb{R}$ on which they are linearly independent. ANSWER: the set $\{-1,0,1\}$ will do.

Linear Operators

Say we want to find a particular solution to the differential equation $y^{\prime \prime}-2 y^{\prime}-3 y=t^{2}+t+2$. If D is the derivative operator and we restrict our attention to the vector space $V=\operatorname{Span} \mathcal{B}=\operatorname{Span}\left\{1, t, t^{2}\right\}$, find $[D]_{\mathcal{B}}$.
ANSWER: $[D]_{\mathcal{B}}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right]$

Rewrite the equation in the form $L y=p$, where L is a single linear operator expressed in terms of D and I, the identity operator. Write it again with respect to the basis \mathcal{B}.
ANSWER: $y^{\prime \prime}-2 y^{\prime}-3 y=\left(D^{2}-2 D-3\right) y .[L]_{\mathcal{B}}=\left[\begin{array}{ccc}-3 & -2 & 2 \\ 0 & -3 & -4 \\ 0 & 0 & -3\end{array}\right]$, which is invertible. Therefore there is a unique solution in our chosen vector space. (This does not mean that the differential equation has a unique solution, because the solutions to the homogeneous equation are of the form $y=c_{1} e^{t}+c_{2} e^{3 t}$.)

