6, 9.4: Higher-Order Equations
 Tuesda

Linear Operators and Linear Independence

Find a differential equation for which $\{1, \sin t, \cos t\}$ is a fundamental solution set. Use the Wronskian to demonstrate that these three functions are linearly independent.
ANSWER: All are solutions to $D\left(D^{2}+1\right) y=0$, or $y^{\prime \prime \prime}+y^{\prime}=0$. As for the Wronskian,

$$
\left|\begin{array}{ccc}
1 & \sin t & \cos t \\
0 & \cos t & -\sin t \\
0 & -\sin t & -\cos t
\end{array}\right|=\left|\begin{array}{cc}
\cos t & -\sin t \\
-\sin t & -\cos t
\end{array}\right|=-1
$$

Since this is nonzero at all points, the functions are linearly independent.

Show that $(D-1)(D+2)\left[t^{2}-2 t+5\right]=(D+2)(D-1)\left[t^{2}-2 t+5\right]$.
ANSWER: The short idea is that both of these are equal to the operator $D^{2}-D-2$, which really just uses the fact that if I is the idenity operator then $I D=D I$. If we expand these out in full, then we get

$$
(D-1)(D+2)\left[t^{2}-2 t+5\right]=(D-1)\left(2 t^{2}-2 t+8\right)=-2 t^{2}-6 t-10
$$

and

$$
(D+2)(D-1)\left[t^{2}-2 t+5\right]=(D+2)\left(-t^{2}+4 t-7\right)=-2 t^{2}-6 t-10
$$

so the two are equal.

If D is the derivative operator, find a general solution to the differential equation

$$
(D-1)^{2}(D+3)\left(D^{2}+2 D+5\right)^{2}[y]=0
$$

ANSWER: $y=c_{1} e^{t}+c_{2} t e^{t}+c_{3} e^{-3 t}+c_{4} e^{-t} \sin 2 t+c_{5} e^{-t} \cos 2 t$.

Show that the functions e^{t}, t^{2}, and $\sin t$ are linearly independent by finding for each term a linear operator that annihilates the other two terms but not that one. Why does this show that the functions are linearly independent?
ANSWER: Each one is individually annihilated by $D-1, D^{3}$, and $D^{2}+1$, so each of the three combinations $(D-1) D^{3},(D-1)\left(D^{2}+1\right), D^{3}\left(D^{2}-1\right)$ annihilate two but not the third.
This shows that they are linearly independent because the null space of any linear operator is a subspace. Thus if two vectors are in a null space but a third is not, the third vector is linearly independent from the other two.

Matrix Methods for Linear Systems

Write the given system in the matrix form $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{f}$:

$$
\begin{aligned}
& x^{\prime}(t)=3 x(t)-y(t)+t^{2} \\
& y^{\prime}(t)=-x(t)+2 y(t)+e^{t}
\end{aligned}
$$

ANSWER: if $\mathbf{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$, then we can write this system as the equation

$$
\mathbf{x}^{\prime}=\left[\begin{array}{cc}
3 & -1 \\
-1 & 2
\end{array}\right] \mathbf{x}+\left[\begin{array}{l}
t^{2} \\
e^{t}
\end{array}\right]
$$

Write the system $\mathbf{x}^{\prime}=\left[\begin{array}{cc}2 & 1 \\ -1 & 3\end{array}\right] \mathbf{x}+e^{t}\left[\begin{array}{l}t \\ 1\end{array}\right]$ as a set of scalar equations.
ANSWER:

$$
\begin{aligned}
& x_{1}(t)=2 x_{1}(t)+x_{2}(t)+t e^{t} \\
& x_{2}(t)=-x_{1}(t)+3 x_{2}(t)+e^{t}
\end{aligned}
$$

Verify that the vector functions $\mathbf{x}_{1}=\left[\begin{array}{c}e^{t} \\ e^{t}\end{array}\right]$ and $\mathbf{x}_{2}=\left[\begin{array}{c}e^{-t} \\ 3 e^{-t}\end{array}\right]$ are solutions to the system $\mathbf{x}^{\prime}=\left[\begin{array}{cc}2 & -1 \\ 3 & -2\end{array}\right] \mathbf{x}$. ANSWER:

$$
\begin{gathered}
\mathbf{A} \mathbf{x}_{1}=\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right]\left[\begin{array}{c}
e^{t} \\
e^{t}
\end{array}\right]=\left[\begin{array}{l}
e^{t} \\
e^{t}
\end{array}\right]=\mathbf{x}_{1}^{\prime} . \\
\mathbf{A x}_{2}=\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right]\left[\begin{array}{c}
e^{-t} \\
3 e^{-t}
\end{array}\right]=\left[\begin{array}{c}
-e^{-t} \\
-3 e^{-t}
\end{array}\right]=\mathbf{x}_{2}^{\prime} .
\end{gathered}
$$

