4.1-4.2: Linear Second-Order Equations

Tuesday, November 1

Second-order Linear Equations

Verify that the function $y(t)=e^{-3 t} \sin (\sqrt{3} t)$ is a solution to the equation $m y^{\prime \prime}+b y^{\prime}+k y=0$ if $m=1, b=$ $6, k=12$. What happens to the solution as $t \rightarrow \infty$?

Find the solution to the initial value problem $y^{\prime \prime}-4 y^{\prime}+3 y=0, y(0)=1, y^{\prime}(0)=1 / 3$.

Find the solution to the initial value problem $y^{\prime \prime}-4 y^{\prime}+4 y^{\prime}=0, y(1)=1, y^{\prime}(1)=1$.

Linear Independence and Subspaces

If $C^{2}(\mathbb{R})$ is the vector space of twice-differentiable functions on \mathbb{R}, show that for fixed a, b, c the set of solutions to the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ is a subspace of $C^{2}(\mathbb{R})$. Better yet: show that the solution set is the null space of a particular linear transformation.

If f and g are linearly dependent functions, show that $(f / g)^{\prime}=0$ whenever $g \neq 0$. How does this relate to the Wronskian of f and g ?

Show that the three functions $y_{1}(t), y_{2}(t)=t e^{t}, y_{3}(t)=t^{2} e^{t}$ are linearly independent on \mathbb{R}.

Bonus: Show that any two solutions to the differential equation $a y^{\prime}+b y=0$ must be linearly dependent.

