4.1-4.2: Linear Second-Order Equations

Tuesday, November 1

Second-order Linear Equations

Verify that the function $y(t)=e^{-3 t} \sin (\sqrt{3} t)$ is a solution to the equation $m y^{\prime \prime}+b y^{\prime}+k y=0$ if $m=1, b=$ $6, k=12$. What happens to the solution as $t \rightarrow \infty$?
ANSWER: as $t \rightarrow \infty, y(t)$ continues oscillating around zero but the size of the oscillations shrinks to zero.

Find the solution to the initial value problem $y^{\prime \prime}-4 y^{\prime}+3 y=0, y(0)=1, y^{\prime}(0)=1 / 3$.
ANSWER: General solution is $y=c_{1} e^{t}+c_{2} e^{3 t}$, solve from there.

Find the solution to the initial value problem $y^{\prime \prime}-4 y^{\prime}+4 y^{\prime}=0, y(1)=1, y^{\prime}(1)=1$.
ANSWER: General solution is $y=c_{1} e^{2 t}+c_{2} t e^{2 t}$, solve from there.

Linear Independence and Subspaces

If $C^{\infty}(\mathbb{R})$ is the vector space of infinitely-differentiable functions on \mathbb{R}, show that for fixed a, b, c the set of solutions to the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ is a subspace of $C^{\infty}(\mathbb{R})$. Better yet: show that the solution set is the null space of a particular linear transformation.
ANSWER: we could check the subspace axioms directly, but easier would be to use the hint. D the derivative operator, is a linear transformation from $C^{\infty}(\mathbb{R})$ to $C^{\infty}(\mathbb{R})$, and so is $\left(a D^{2}+b D+c I\right)$. The solution set is the null space of this linear transformation, and is therefore a subspace.

If f and g are linearly dependent functions, show that $(f / g)^{\prime}=0$ whenever $g \neq 0$. How does this relate to the Wronskian of f and g ?
ANSWER: If $f=c g$, then $f / g=c$ so $(f / g)^{\prime}=0$, defined whenever $g \neq 0$. We can expand this as $(f / g)^{\prime}=\left(g f^{\prime}-f g^{\prime}\right) / g^{2}$, so whenever $g \neq 0$ the numerator (the Wronskian) must also be zero.

Show that the three functions $y_{1}(t), y_{2}(t)=t e^{t}, y_{3}(t)=t^{2} e^{t}$ are linearly independent on \mathbb{R}.
ANSWER: easiest would probably be to show that they are linearly independent on the set $(-1,0,1)$ or something like that: evaluated at these three points, we get the vectors $(1 / e, 1, e),(-1 / e, 0, e),(1 / e, 0, e)$. The second and third are linearly independent, and the first is independent from the other two because of the second coordinate.

Bonus: Show that any two solutions to the differential equation $a y^{\prime}+b y=0$ must be linearly dependent. ANSWER: Show that $y=e^{-(b / a) t}$ is a solution and that for any other solution f, the Wronskian of f and y is zero.

