4.3-4.5: Linear Second-Order Equations

Thursday, October 27

4.3: Complex Roots

Warmup: what is $e^{i \pi / 3}$ in terms of sines and cosines?

Solve the initial value problem $w^{\prime \prime}-4 w^{\prime}+2 w=0$ where $w(0)=0, w^{\prime}(0)=1$.

4.4: Nonhomogeneous Equations

Explain what the solution will look like for a differential equation of the form...

- $a y^{\prime \prime}+b y^{\prime}+c y=p_{k}(t)$, where p_{k} is a degree k polynomial.
- $a y^{\prime \prime}+b y^{\prime}+c y=p_{k}(t) e^{r t}$
- $a y^{\prime \prime}+b y^{\prime}+c y=e^{\alpha t} \cos \beta t$

Find particular solutions to the given differential equations:

1. $y^{\prime \prime}+2 y^{\prime}-y=10$
2. $y^{\prime \prime}+4 y=16 t \sin 2 t$

4.5 In One Sentence

The set of solutions to $A \mathbf{x}=\mathbf{b}$ is $\mathbf{x}_{*}+\operatorname{Nul}(A)$, where \mathbf{x}_{*} is any particular solution.
Find all solutions of the equation $y^{\prime \prime}+y=1$.

The Derivative Operator

Say we want to solve the differential equation $y^{\prime \prime}+2 y^{\prime}+4 y=5 \sin 3 t$, and suspect that the solution will be of the form $A \sin 3 t+B \cos 3 t$. If $\mathcal{B}=\{\sin 3 t, \cos 3 t\}$ and D is the derivative operator, find $[D]_{\mathcal{B}}$ and $\left[D^{2}\right]_{\mathcal{B}}$. Use this information to set up the problem as a system of equations $A \mathbf{x}=\mathbf{b}$.

Say we want to solve the differential equation $y^{\prime \prime}-2 y^{\prime}+y=3 e^{t}$. If \mathcal{B} is the basis $\left\{e^{t}\right\}$, what does the resulting linear system look like? If \mathcal{C} is the basis $\left\{t e^{t}, e^{t}\right\}$, what are $[D]_{\mathcal{C}}$ and the resulting linear system?

Linear Independence

Prove that if T is a linear transformation and $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is a linearly independent set, then $\left\{v_{1}, \ldots, v_{n}\right\}$ is also a linearly independent set.

For $p \in \mathbb{P}_{2}$, define $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{3}$ by $T(p)=[p(0), p(1), p(3)]$. Use the previous problem to show that $\left\{1, t, t^{2}\right\}$ is a linearly independent set.

Show that $\{\sin t, \sin 2 t, \cos t\}$ is a linearly independent set.

