4.3-4.5: Linear Second-Order Equations

Thursday, October 27

4.3: Complex Roots

Warmup: what is $e^{i \pi / 3}$ in terms of sines and cosines?
ANSWER: $e^{i \pi / 3}=\cos \pi / 3+i \sin \pi / 3=\frac{1}{2}+i \sqrt{3} / 2$.

Solve the initial value problem $w^{\prime \prime}-4 w^{\prime}+2 w=0$ where $w(0)=0, w^{\prime}(0)=1$.
ANSWER: The characteristic equation has roots $2 \pm i \sqrt{3}$, so the solution is of the form $w=c_{1} e^{2 t} \cos \sqrt{3} t+$ $c_{2} e^{2 t} \sin \sqrt{3} t$. If $w(0)=0$ then $c_{1}=0$, and if $w^{\prime}(0)=1$ then $c_{2}=1 / \sqrt{3}$.

4.4: Nonhomogeneous Equations

Explain what the solution will look like for a differential equation of the form...

- $a y^{\prime \prime}+b y^{\prime}+c y=p_{k}(t)$, where p_{k} is a degree k polynomial.

ANSWER: a degree k polynomial.

- $a y^{\prime \prime}+b y^{\prime}+c y=p_{k}(t) e^{r t}$

ANSWER: $y=q_{k}(t) e^{r t}$, possibly up to $y=q_{k+2} e^{r t}$ (with a degree $k+2$ polynomial) depending on whether r is a root of the characteristic equation.

- $a y^{\prime \prime}+b y^{\prime}+c y=e^{\alpha t} \cos \beta t$
$y=c_{1} e^{\alpha t} \cos \beta t+c_{2} e^{\alpha t} \sin \beta t$.
Find particular solutions to the given differential equations:

1. $y^{\prime \prime}+2 y^{\prime}-y=10$

ANSWER: Make a guess that y is a degree- 0 polynomial, so $y=C$. Solving gives $y=-10$.
2. $y^{\prime \prime}+4 y=16 t \sin 2 t$

ANSWER: Guess $y=A_{2} t^{2} \sin 2 t+A_{1} t \sin 2 t+B_{2} t^{2} \cos 2 t+B_{1} t \sin 2 t$, $\operatorname{since} \sin 2 t$ and $\cos 2 t$ are roots of the homogeneous equation. Have fun solving it!

4.5 In One Sentence

The set of solutions to $A \mathbf{x}=\mathbf{b}$ is $\mathbf{x}_{*}+\operatorname{Nul}(A)$, where \mathbf{x}_{*} is any particular solution.
Find all solutions of the equation $y^{\prime \prime}+y=1$.
ANSWER: $y=1+c_{1} \cos t+c_{2} \sin t$.

The Derivative Operator

Say we want to solve the differential equation $y^{\prime \prime}+2 y^{\prime}+4 y=5 \sin 3 t$, and suspect that the solution will be of the form $A \sin 3 t+B \cos 3 t$. If $\mathcal{B}=\{\sin 3 t, \cos 3 t\}$ and D is the derivative operator, find $[D]_{\mathcal{B}}$ and $\left[D^{2}\right]_{\mathcal{B}}$. Use this information to set up the problem as a system of equations $A \mathbf{x}=\mathbf{b}$.
ANSWER: $D=\left[\begin{array}{cc}0 & -3 \\ 3 & 0\end{array}\right], D^{2}=-9 I$.
Then $y^{\prime \prime}+2 y^{\prime}+4 y=\left(D^{2}+2 D+4\right)=2 D-5=\left[\begin{array}{cc}-5 & -6 \\ 6 & -5\end{array}\right]\left[\begin{array}{l}A \\ B\end{array}\right]=\left[\begin{array}{l}5 \\ 0\end{array}\right]$.

Say we want to solve the differential equation $y^{\prime \prime}-2 y^{\prime}+y=3 e^{t}$. If \mathcal{B} is the basis $\left\{e^{t}\right\}$, what does the resulting linear system look like? If \mathcal{C} is the basis $\left\{t e^{t}, e^{t}\right\}$, what are $[D]_{\mathcal{C}}$ and the resulting linear system? ANSWER: $[D]_{\mathcal{B}}$ and $[D]_{\mathcal{C}}$ are both zero matrices. We need to go one step higher and look for a solution in the span of $\left\{t^{2} e^{t}, t e^{t}, e^{t}\right\}$.

Linear Independence

Prove that if T is a linear transformation and $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is a linearly independent set, then $\left\{v_{1}, \ldots, v_{n}\right\}$ is also a linearly independent set.
ANSWER: If $c_{1} T\left(v_{1}\right)+\ldots+c_{n} T\left(v_{n}\right)=0$ implies that $c_{1}, \ldots c_{n}=0$, then

$$
\begin{aligned}
d_{1} v_{1}+\ldots+d_{n} v_{n}=0 & \Rightarrow T\left(d_{1} v_{1}+\ldots+d_{n} v_{n}\right)=0 \\
& \Rightarrow d_{1} T\left(v_{1}\right)+\ldots+d_{n} T\left(v_{n}\right)=0 \\
& \Rightarrow d_{1}, \ldots d_{n}=0 .
\end{aligned}
$$

If we put everything in matrix form, then this says that if $A V$ has full column rank then so does V. (The contrapositive may make more sense: if V has a nontrivial null space then so does $A V$.)

For $p \in \mathbb{P}_{2}$, define $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{3}$ by $T(p)=[p(0), p(1), p(3)]$. Use the previous problem to show that $\left\{1, t, t^{2}\right\}$ is a linearly independent set.
ANSWER:
$T(1)=[1,1,1], T(2)=[0,1,3], T(3)=[0,3,9]$. These vectors in \mathbb{R}^{3} are linearly independent, and therefore so are the original vectors.

Show that $\{\sin t, \sin 2 t, \cos t\}$ is a linearly independent set.
ANSWER: Evaluating at $0, \pi / 4, \pi / 2$ works.

