1.1-1.2: Row Reduction and Echelon Forms
 Thursday, August 25

Sets

Describe each of the following sets:

- \mathbb{N}
- \mathbb{C}
- \mathbb{R}^{2}
- \mathbb{Z}
- $\mathbb{Z} \cap \mathbb{R}$
- $\left\{n+\frac{1}{2}: n \in \mathbb{N}\right\}$
- \mathbb{R}
- $\mathbb{Q} \cup \mathbb{N}$
- $\left\{x: x \in \mathbb{R}, x^{2}<1\right\}$

Use set builder notation to describe the set of all odd integers.

Sketch the following subset of $\mathbb{R}^{2}:\left[\left(\frac{t}{2}, t+1\right): t \in \mathbb{R}\right]$

Row operations

What are the 3 types of elementary row operations on a matrix?

Give an example of a matrix that is in echelon form but not reduced echelon form. Give an example of a matrix whose entries are all 1 or 0 but is not in echelon form.
(1.2, Example 3): Use elementary row operations to transform the following matrix into echelon form, then reduced echelon form.

$$
\left[\begin{array}{cccccc}
0 & 3 & -6 & 6 & 4 & -5 \\
3 & -7 & 8 & -5 & 8 & 9 \\
3 & -9 & 12 & -9 & 6 & 15
\end{array}\right]
$$

(1.2, Example 5): Determine the existence and uniqueness of the solutions to the system

$$
\begin{aligned}
3 x_{2}-6 x_{3}+6 x_{4}+4 x_{5} & =-5 \\
3 x_{1}-7 x_{2}+8 x_{3}-5 x_{4}+8 x_{5} & =9 \\
3 x_{1}-9 x_{2}+12 x_{3}-9 x_{4}+6 x_{5} & =15
\end{aligned}
$$

Suppose you want to find a parabola of the form $y=a x^{2}+b x+c$ that passes through the points $(1,1)$, $(-1,7)$, and $(2,4)$. Set up this problem as a system of linear equations, form the augmented matrix system and transform it to reduced echelon form, and describe the set of solutions.

Do the same with fitting a parabola of the form $y=a x^{2}+b x+c$ through the following sets of points:

- $(-1,2),(2,3)$, and $(2,5)$
- $(-2,8),(-1,4),(0,3)$, and $(2,4)$
- $(-1,2)$ and $(1,2)$

