Midterm 2: Review

Tuesday, October 25

1 Definitions

- Null space, column space
- basis
- dimension, isomorphism
- Rank Theorem (Rank-Nullity Theorem)
- Row Space
- Change-of-basis matrix
- Eigenvector, eigenvalue, eigenspace
- characteristic polynomial
- similarity, diagonalizability
- dot product, orthogonality, norm
- projection, perpendicular space
- orthogonal sets, orthonormal sets
- Gram-Schmidt, QR, orthogonal matrix
- Least-squares problem, normal equations
- Use of QR in solving least squares
- Inner product
- symmetric matrix, Spectral Theorem

2 Computational Problems

- Given a vector \mathbf{x} and basis \mathcal{B}, find $[\mathbf{x}]_{\mathcal{B}}$.
- Determine whether two given vector spaces are isomorphic.
- Given the size and column space of a matrix, find the dimensions of the row space and null space (or vice versa).
- Given two bases \mathcal{B} and \mathcal{C}, find the change-of-basis matrices $P_{\mathcal{C} \leftarrow \mathcal{B}}$ and $P_{\mathcal{B} \leftarrow \mathcal{C}}$.
- Find the eigenvectors and eigenvalues of a 2×2 or 3×3 matrix.
- Determine whether a given matrix is diagonalizable.
- Given a factorization $A=P D P^{-1}$, find A^{4} and A^{-1} in terms of P and D.
- Given a matrix A and a basis \mathcal{B}, find $[A]_{\mathcal{B}}$.
- Find the distance between two given vectors.
- Find the perpendicular space for a given subspace.
- Given a vector \mathbf{y} and a subspace W, find the distance from \mathbf{y} to W and the projection of \mathbf{y} onto W.
- Find an orthogonal basis for a given set of vectors.
- Given an inner product \langle,$\rangle for a vector space V$, (1) compute the inner product of two vectors \mathbf{v}_{1} and \mathbf{v}_{2}, (2) find an orthogonal basis for a set of vectors.

3 Conceptual Problems/Quick Checks

- What is a basis? What is the relation between bases of \mathbb{R}^{n} and invertible matrices?
- How do the dimensions of the row space, column space, and null space of a matrix relate to each other?
- How can you quickly tell whether a matrix is rank zero? Rank 1?
- How can you quickly tell whether a 2×2 matrix is orthogonal?
- What is the formula for the inverse of a 2×2 matrix?
- What is the algebraic multiplicity of an eigenvalue of a matrix? How does it relate to the dimension of the eigenspace for that eigenvalue?
- If a matrix is not invertible, what can you conclude about its eigenvalues?
- If a matrix is not diagonalizable, what can you conclude about its eigenvalues?
- UNIQUE REPRESENTATION: how does this concept apply to (1) a basis for a vector space, (2) A subspace W and its perpendicular space $W^{\perp},(3)$ an orthogonal basis?
- BE ABLE TO SKETCH WHAT A PROJECTION LOOKS LIKE IN 2 OR 3 DIMENSIONS.
- What is the relation between the perpendicular space of a matrix and its column/row/null spaces? How do the dimensions compare?
- (\star) What are the significant properties of orthogonal matrices? What is special about their behavior as linear transformations?
- What is the relation between least-squares problems and projections?

