Midterm 2: Review Problems Tuesday, October 25

1 Computations

- 1. If $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} -3 \\ 5 \end{bmatrix} \right\}$ and $\mathbf{x} = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$, find $[\mathbf{x}]_{\mathcal{B}}$.
- 2. If $\mathcal{B} = \{1 t^2, t t^2, 2 t + t^2\}$, find the coordinate vector of $p(t) = 1 + 3t 6t^2$ relative to \mathcal{B} .
- 3. If the null space of a 5×4 matrix A is 2-dimensional, what is the dimension of the row space of A?
- 4. If A is a 7×5 matrix, what is the largest possible rank of A?
- 5. Let \mathcal{B} and \mathcal{C} be bases for a vector space V such that $\mathbf{b}_1 = 2\mathbf{c}_1 \mathbf{c}_2 + \mathbf{c}_3$, $\mathbf{b}_2 = 3\mathbf{c}_2 + \mathbf{c}_3$, and $\mathbf{b}_3 = -3\mathbf{c}_1 + 2\mathbf{c}_3$. Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} . If $\mathbf{x} = \mathbf{b}_1 2\mathbf{b}_2 + 2\mathbf{b}_3$, find $[\mathbf{x}]_{\mathcal{C}}$.
- 6. If $A^2 A = I$, what can you conclude about the eigenvalues of A?

7. Diagonalize the matrix $\begin{bmatrix} 4 & 0 & -1 \\ 0 & 4 & -1 \\ 1 & 0 & 2 \end{bmatrix}$ or show that it is not possible to do so.

8. Find the solution to $\min_x ||A\mathbf{x} - \mathbf{b}||^2$, where

$$A = \begin{bmatrix} 1 & 3 & 5\\ 1 & 1 & 0\\ 1 & 1 & 2\\ 1 & 3 & 3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 3\\ 5\\ 7\\ -3 \end{bmatrix},$$

using both the normal equations and the QR factorization of A.

9. If \langle , \rangle is an inner product on \mathbb{P}_2 defined by $\langle p, q \rangle = p(0)q(0) + 2p(1)q(1) + p(2)q(2)$, find an orthogonal basis for \mathbb{P}_2 with respect to \langle , \rangle .

2 True/False

For each statement, explain why it is true or give a counterexample.

- 1. If **x** is in V and if \mathcal{B} contains n vectors, then $[\mathbf{x}]_{\mathcal{B}}$ is in \mathbb{R}^n .
- 2. The vector spaces \mathbb{P}_3 and \mathbb{R}^3 are isomorphic.
- 3. If H is a subspace of V then the dimension of H must be less than the dimension of V.
- 4. If B is any echelon form of A then the pivot columns of B form a basis for the column space of A.
- 5. The row space of A^T is the same as the column space of A.
- 6. If A and B are similar and A is diagonalizable, then B is also diagonalizable.
- 7. If E is an elementary matrix then the eigenvalues of EA are the same as the eigenvalues of A.
- 8. If an $n \times n$ matrix has n distinct eigenvalues then it has a basis of eigenvectors.
- 9. If an $n \times n$ matrix has a basis of eigenvectors then it has n distinct eigenvalues.

- 10. If λ is an eigenvalue of A then it is also an eigenvalue of A^2 .
- 11. If the columns of A are linearly independent then the equation $A\mathbf{x} = \mathbf{b}$ has exactly one least-squares solution.
- 12. The least-squares solution of $A\mathbf{x} = \mathbf{b}$ is the point in the row space of A closest to **b**.
- 13. If $\langle p(t), q(t) \rangle = p(0)q(1) + p(1)q(0)$, then \langle, \rangle defines an inner product on \mathbb{P}_1 .

3 Proofs

- 1. Show that if C[a, b] is the set of all continuous functions on the interval [a, b] then C[a, b] is infinitedimensional.
- 2. Show that if **u** and **v** are vectors then $\mathbf{u}\mathbf{v}^T$ has rank 1.
- 3. Show that the rank of a matrix product AB is at most the minimum of (rank(A), rank(B)).
- 4. Show that if A is diagonalizable then so is $A^2 3A + 2I$.
- 5. If A and B are both diagonalizable and every eigenvector of A is an eigenvector of B (and vice versa), then AB = BA.
- 6. Show that if A is similar to B and B is similar to C then A is similar to C.
- 7. If $\langle p(t), q(t) \rangle = p(0)q(0) + 3p(1)q(1) p(2)q(2)$, show that \langle , \rangle does **not** define an inner product on \mathbb{P}_2 .