# Midterm 2: Review Problems 

Tuesday, October 25

## 1 Computations

1. If $\mathcal{B}=\left\{\left[\begin{array}{c}1 \\ -2\end{array}\right],\left[\begin{array}{c}-3 \\ 5\end{array}\right]\right\}$ and $\mathbf{x}=\left[\begin{array}{c}2 \\ -5\end{array}\right]$, find $[\mathbf{x}]_{\mathcal{B}}$.
2. If $\mathcal{B}=\left\{1-t^{2}, t-t^{2}, 2-t+t^{2}\right\}$, find the coordinate vector of $p(t)=1+3 t-6 t^{2}$ relative to $\mathcal{B}$.
3. If the null space of a $5 \times 4$ matrix $A$ is 2 -dimensional, what is the dimension of the row space of $A$ ?
4. If $A$ is a $7 \times 5$ matrix, what is the largest possible rank of $A$ ?
5. Let $\mathcal{B}$ and $\mathcal{C}$ be bases for a vector space $V$ such that $\mathbf{b}_{1}=2 \mathbf{c}_{1}-\mathbf{c}_{2}+\mathbf{c}_{3}, \mathbf{b}_{2}=3 \mathbf{c}_{2}+\mathbf{c}_{3}$, and $\mathbf{b}_{3}=-3 \mathbf{c}_{1}+2 \mathbf{c}_{3}$. Find the change-of-coordinates matrix from $\mathcal{B}$ to $\mathcal{C}$. If $\mathbf{x}=\mathbf{b}_{1}-2 \mathbf{b}_{2}+2 \mathbf{b}_{3}$, find $[\mathbf{x}]_{\mathcal{C}}$.
6. If $A^{2}-A=I$, what can you conclude about the eigenvalues of $A$ ?
7. Diagonalize the matrix $\left[\begin{array}{ccc}4 & 0 & -1 \\ 0 & 4 & -1 \\ 1 & 0 & 2\end{array}\right]$ or show that it is not possible to do so.
8. Find the solution to $\min _{x}\|A \mathbf{x}-\mathbf{b}\|^{2}$, where

$$
A=\left[\begin{array}{lll}
1 & 3 & 5 \\
1 & 1 & 0 \\
1 & 1 & 2 \\
1 & 3 & 3
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
3 \\
5 \\
7 \\
-3
\end{array}\right]
$$

using both the normal equations and the QR factorization of $A$.
9. If $\langle$,$\rangle is an inner product on \mathbb{P}_{2}$ defined by $\langle p, q\rangle=p(0) q(0)+2 p(1) q(1)+p(2) q(2)$, find an orthogonal basis for $\mathbb{P}_{2}$ with respect to $\langle$,$\rangle .$

## 2 True/False

For each statement, explain why it is true or give a counterexample.

1. If $\mathbf{x}$ is in $V$ and if $\mathcal{B}$ contains $n$ vectors, then $[\mathbf{x}]_{\mathcal{B}}$ is in $\mathbb{R}^{n}$.
2. The vector spaces $\mathbb{P}_{3}$ and $\mathbb{R}^{3}$ are isomorphic.
3. If $H$ is a subspace of $V$ then the dimension of $H$ must be less than the dimension of $V$.
4. If $B$ is any echelon form of $A$ then the pivot columns of $B$ form a basis for the column space of $A$.
5. The row space of $A^{T}$ is the same as the column space of $A$.
6. If $A$ and $B$ are similar and $A$ is diagonalizable, then $B$ is also diagonalizable.
7. If $E$ is an elementary matrix then the eigenvalues of $E A$ are the same as the eigenvalues of $A$.
8. If an $n \times n$ matrix has $n$ distinct eigenvalues then it has a basis of eigenvectors.
9. If an $n \times n$ matrix has a basis of eigenvectors then it has $n$ distinct eigenvalues.
10. If $\lambda$ is an eigenvalue of $A$ then it is also an eigenvalue of $A^{2}$.
11. If the columns of $A$ are linearly independent then the equation $A \mathbf{x}=\mathbf{b}$ has exactly one least-squares solution.
12. The least-squares solution of $A \mathbf{x}=\mathbf{b}$ is the point in the row space of $A$ closest to $\mathbf{b}$.
13. If $\langle p(t), q(t)\rangle=p(0) q(1)+p(1) q(0)$, then $\langle$,$\rangle defines an inner product on \mathbb{P}_{1}$.

## 3 Proofs

1. Show that if $C[a, b]$ is the set of all continuous functions on the interval $[a, b]$ then $C[a, b]$ is infinitedimensional.
2. Show that if $\mathbf{u}$ and $\mathbf{v}$ are vectors then $\mathbf{u v}^{T}$ has rank 1 .
3. Show that the rank of a matrix product $A B$ is at most the minimum of $(\operatorname{rank}(A), \operatorname{rank}(B))$.
4. Show that if $A$ is diagonalizable then so is $A^{2}-3 A+2 I$.
5. If $A$ and $B$ are both diagonalizable and every eigenvector of $A$ is an eigenvector of $B$ (and vice versa), then $A B=B A$.
6. Show that if $A$ is similar to $B$ and $B$ is similar to $C$ then $A$ is similar to $C$.
7. If $\langle p(t), q(t)\rangle=p(0) q(0)+3 p(1) q(1)-p(2) q(2)$, show that $\langle$,$\rangle does not define an inner product on \mathbb{P}_{2}$.
